Eksperimental'noe issledovanie peredatochnoy funktsii prototipa sverkhprovodyashchego gauss-neyrona

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The transfer function of a shunted two-junction interferometer, which was previously proposed as a basic element of superconducting neural networks based on radial basis functions, has been measured for the first time. The sample has been implemented in the form of a multilayer thin-film structure over a thick superconducting screen with the inductive supply of an input signal and the readout of an output signal. It has been found that the transfer function is the sum of the linear and periodic bell-shaped components. The linear component is likely due to the direct transfer of the input magnetic flux to the measuring circuit. The shape of the nonlinear component, which is the output signal of a Gauss neuron, can be approximately described by a Gaussian distribution function or, more precisely, by a parametric dependence derived theoretically in previous works. It has been shown that the transfer function of the Gauss neuron can depend on the choice of the working point of the measuring circuit, which promotes the development of integrated neural networks based on implemented elements.

作者简介

A. Ionin

Osipyan Institute of Solid State Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

L. Karelina

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

N. Shuravin

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

M. Sidel'nikov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

F. Razorenov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

S. Egorov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

V. Bol'ginov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

参考

  1. K. Ishida, I. Byun, I. Nagaoka, K. Fukumitsu, M. Tanaka, S. Kawakami, T. Tanimoto, T. Ono, J. Kim, and K. Inoue, IEEE Micro 41(3), 19 (2021).
  2. P. Crotty, D. Schult, and K. Segall, Phys. Rev. E 82(1), 011914 (2010).
  3. M. L. Schneider, C.A. Donnelly, S.E. Russek, B. Baek, M.R. Pufall, P. F. Hopkins, P.D. Dresselhaus, S.P. Benz, and W.H. Rippard, Sci. Adv. 4(1), e1701329 (2018).
  4. M. L. Schneider and K. Segall, J. Appl. Phys. 128, 214903 (2020).
  5. M. L. Schneider, C.A. Donnelly, and S.E. Russek, J. Appl. Phys. 124, 161102 (2018).
  6. K.K. Likharev and V.K. Semenov, IEEE Trans. Appl. Supercond. 1(1), 3 (1991).
  7. O.A. Mukhanov, V.K. Semenov, and K.K. Likharev, IEEE Trans. Magn. 23, 759 (1987).
  8. P. Bunyk, K.K. Likharev, and D. Zinoviev, Int. J. High Speed Electron. Syst. 11, 257 (2001).
  9. I. I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Yu. Kupriyanov, A.L. Gudkov, and A. S. Sidorenko, Beilstein J. Nanotechnol. 8, 2689 (2017).
  10. A.E. Schegolev, N.V. Klenov, G. I. Gubochkin, M.Yu. Kupriyanov, and I. I. Soloviev, Nanomaterials 13, 2101 (2023).
  11. O.V. Skryabina, A.E. Schegolev, N.V. Klenov, S.V. Bakurskiy, A.G. Shishkin, S.V. Sotnichuk, K. S. Napolskii, I.A. Nazhestkin, I. I. Soloviev, M.Yu. Kupriyanov, and V. S. Stolyarov, Nanomaterials 12, 1671 (2022).
  12. V. Semenov, E. Golden, and S. Tolpygo, IEEE Transactions on Applied Superconductivity 32, 1-5 (2021).
  13. V. Semenov, E. Golden, and S. Tolpygo, IEEE Trans. Appl. Supercond. 33, 1 (2023).
  14. N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, Supercond. Sci. Technol. 26(3), 035010 (2013).
  15. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, J. Appl. Phys. 117(17), 173912 (2015).
  16. Q. Xu, Y. Yamanashi, C. L. Ayala, N. Takeuchi, T. Ortlepp, and N. Yoshikawa, Design of an extremely energy-efficient hardware algorithm using adiabatic superconductor logic 2015, 15th International Superconductive Electronics Conference (ISEC), Nagoya, Japan (2015), p. 1 (2015).
  17. A. S. Sidorenko, S.V. Bakurskiy, Yu. Savva et al. (Collaboration), International Journal of Circuits, Systems and Signal Processing 17, 177 (2023).
  18. A.E. Schegolev, N.V. Klenov, I. I. Soloviev, and M.V. Tereshonok, Beilstein J. Nanotechnol 7, 1397 (2016).
  19. N.V. Klenov, A.E. Schegolev, I. I. Soloviev, S.V. Bakurskiy, and M.V. Tereshonok, IEEE Trans. Appl. Supercond. 28(7), 1301006 (2018).
  20. I. I. Soloviev, A.E. Schegolev, N.V. Klenov, S.V. Bakurskiy, M.Yu. Kupriyanov, M.V. Tereshonok, A.V. Shadrin, V. S. Stolyarov, and A.A. Golubov, J. Appl. Phys. 124(15), 152113 (2018).
  21. N.V. Klenov, A.V. Kuznetsov, A.E. Schegolev, I. I. Soloviev, S.V. Bakursky, M.Yu. Kupriyanov, and M.V. Tereshonok, Low Temp. Phys. 45(7), 769 (2019).
  22. S. Bakurskiy, M. Kupriyanov, N.V. Klenov, I. Soloviev, A. Schegolev, R. Morari, Yu. Khaydukov, and A. S. Sidorenko, Beilstein J. Nanotechnol. 11, 1336 (2020).
  23. A.E. Schegolev, N.V. Klenov, I. I. Soloviev, A. L. Gudkov, and M.V. Tereshonok, Nanobiotechnology Reports 16(6), 811 (2021).
  24. A. Schegolev, N. Klenov, I. Soloviev, and M. Tereshonok, Supercond. Sci. Technol. 34(1), 015006 (2021).
  25. M. Bastrakova, A. Gorchavkina, A. Schegolev, N. Klenov, I. Soloviev, A. Satanin, and M. Tereshonok, Symmetry 13(9), 1735 (2021).
  26. A.E. Schegolev, N.V. Klenov, S.V. Bakurskiy, I. I. Soloviev, M.Yu. Kupriyanov, M.V. Tereshonok, and A. S. Sidorenko, Beilstein J. Nanotechnol. 13, 444 (2022).
  27. M.V. Bastrakova, D. S. Pashin, D.A. Rybin, A.E. Schegolev, N.V. Klenov, I. I. Soloviev, A.A. Gorchavkina, and A.M. Satanin, Beilstein J. Nanotechnol. 13, 653 (2022).
  28. L.N. Kanal, Encyclopedia of Computer Science, John Wiley and Sons Ltd., Chichester, UK (2003), p. 1383.
  29. В.В. Шмидт, Введение в физику сверхпроводников, 2-е изд., МЦНМО, М. (2000).
  30. A. I. Gubin, K. S. Il'in, S.A. Vitusevich, M. Siegel, and N. Klein, Phys. Rev. B 72, 064503 (2005).
  31. А.С. Ионин, Н.С. Шуравин, Л.Н. Карелина, А.Н. Россоленко, М.С. Сидельников, С. В. Егоров, В.И. Чичков, М.В. Чичков, М.В. Жданова, А.Е. Щеголев, В. В. Больгинов, ЖЭТФ 164(6(12)), 1 (2023).
  32. А. Бароне, Дж. Паттерно, Эффект Джозефсона, Мир, М. (1984).
  33. К.К. Лихарев, Введение в динамику джозефсоновских переходов, Наука, М. (1985).
  34. С. В. Бакурский, Н.В. Кленов, М.Ю. Куприянов, И.И. Соловьев, М.М. Хапаев,Журнал вычислительной математики и математической физики 61(5), 885 (2021).
  35. М.М. Хапаев, М.Ю. Куприянов, Дифференциальные уравнения 58(8), 1148 (2022).

版权所有 © Российская академия наук, 2023

##common.cookie##