Sintez i sverkhprovodyashchie svoystva nekotorykh faz poligidridov zheleza pri vysokikh davleniyakh

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental syntheses of two iron polyhydrides FeHx(I) and FeHx(II) have been carried out in diamond anvil cells by laser heating of metallic iron to temperatures of about 700 and 2000 K at pressures of 178 and 195 GPa, respectively. The initial sample is an iron plate enriched in the Fe-57 Mössbauer isotope placed in ammonia borane (BH3NH3). The electronic properties of FeHx compounds have been studied by measuring the electrical resistance R(T) at high pressures (180–216 GPa) in the temperature range of ~8–300 K. Based on the obtained R(T) data, two superconducting phases of FeHx compounds with the maximum critical transition temperatures Tc ≈ 25.0 and 27.7 K have been identified. It has been found that with increasing pressure, the temperature Tc in both hydrides increases linearly with the coefficients dTc/dP ~ 0.063 ± 0.001 K/GPa and 0.056 ± 0.003 K/GPa for the FeHx(I) and FeHx(II) phases, respectively. Superconductivity in iron hydrides revealed by the measured resistance R(T) has been confirmed by a number of additional methods.

About the authors

A. G. Gavrilyuk

Institute for Nuclear Research, Russian Academy of Sciences; Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences; Immanuel Kant Baltic Federal University

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 119333, Moscow, Russia; 236041, Kaliningrad, Russia

I. A. Troyan

Institute for Nuclear Research, Russian Academy of Sciences; Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 119333, Moscow, Russia

V. V. Struzhkin

Center for High Pressure Science and Technology Advanced Research (HPSTAR)

Email: gavriliuk@mail.ru
Pudong, 201203, Shanghai, People’s Republic of China

D. N. Trunov

Institute for Nuclear Research, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia

S. N. Aksenov

Institute for Nuclear Research, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia

A. A. Mironovich

Institute for Nuclear Research, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia

A. G. Ivanova

Institute for Nuclear Research, Russian Academy of Sciences; Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences

Email: gavriliuk@mail.ru
108840, Troitsk, Moscow, Russia; 119333, Moscow, Russia

I. S. Lyubutin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences

Author for correspondence.
Email: gavriliuk@mail.ru
119333, Moscow, Russia

References

  1. D.Y. Pushcharovsky, Geochemistry International 57, 941 (2019).
  2. K.D. Litasov and A. F. Shatskiy, Russian Geology and Geophysics 57, 22 (2016).
  3. Z.G. Bazhanova, V.V. Roizen, and A.R. Oganov, Phys.-Uspekhi 60, 1025 (2017).
  4. K.D. Litasov, Z. I. Popov, P.N. Gavryushkin, S.G. Ovchinnikov, and A. S. Fedorov, Russian Geology and Geophysics 56, 164 (2015).
  5. K. Hirose, B. Wood, and L. Voˇcadlo, Nat. Rev. Earth Environ. 2, 645 (2021).
  6. S. Tagawa, N. Sakamoto, K. Hirose, S. Yokoo, J. Hernlund, Y. Ohishi, and H. Yurimoto, Nat. Commun. 12, 2588 (2021).
  7. S. Tagawa, H. Gomi, K. Hirose, and Y. Ohishi, Geophys. Res. Lett. 49, e2021GL096260 (2022).
  8. N. Hirao, T. Kondo, E. Ohtani, K. Takemura, and T. Kikegawa, Geophys. Res. Lett. 31, L06616-1 (2004).
  9. Y. He, D.Y. Kim, V.V. Struzhkin, Z.M. Geballe, V. Prakapenka, and H.-k. Mao, Sci. Bull. 68(4), 1567 (2023).
  10. M. J. Walter, National Science Review 8, nwab007 (2021).
  11. H. Mao and W. L. Mao, Matter and Radiation at Extremes 5, 038102 (2020).
  12. A.P. Drozdov, M. I. Eremets, I.A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).
  13. I. Troyan, A. Gavriliuk, R. R¨uffer, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A.P. Drozdov, and M. I. Eremets, Science 351, 1303 (2016).
  14. M. Somayazulu, M. Ahart, A.K. Mishra, Z.M. Geballe, M. Baldini, Y. Meng, V.V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).
  15. I.A. Troyan, D.V. Semenok, A.G. Kvashnin et al. (Collaboration), Advanced Materials 2006832 (2021).
  16. D. Wang, Y. Ding, and H.-K. Mao, Materials 14, 7563 (2021).
  17. I.A. Troyan, D.V. Semenok, A.G. Ivanova, A.G. Kvashnin, D. Zhou, A.V. Sadakov, O.A. Sobolevskiy, V.M. Pudalov, I. S. Lyubutin, and A.R. Oganov, Physics-Uspekhi 65, 748 (2022).
  18. C.M. P'epin, A. Dewaele, G. Geneste, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 113, 265504 (2014).
  19. C.M. P'epin, Science 357, 382 (2017).
  20. Z.G. Bazhanova, A.R. Oganov, and O. Gianola, Phys.-Uspekhi 55, 489 (2012).
  21. A.G. Kvashnin, I.A. Kruglov, D.V. Semenok, and A.R. Oganov, J. Phys. Chem. C 122, 4731 (2018).
  22. F. Li, D. Wang, H. Du, D. Zhou, Y. Ma, and Y. Liu, RSC Adv. 7, 12570 (2017).
  23. N. Zarifi, T. Bi, H. Liu, and E. Zurek, J. Phys. Chem. C 122, 24262 (2018).
  24. S. Zhang, J. Lin, Y. Wang, G. Yang, A. Bergara, and Y. Ma, J. Phys. Chem. C 122, 12022 ( 2018).
  25. D.N. Sagatova, P.N. Gavryushkin, N.E. Sagatov, I.V. Medrish, and K.D. Litasov, JETP Lett. 111, 145 (2020).
  26. V.E. Antonov, I.T. Belash, V.F. Degtyareva, E.G. Ponyatovskii, and V. I. Shiryaev, Sov. Phys. Dokl., Engl. Transl. 25, 490 (1980).
  27. V.E. Antonov, I.T. Belash, and E.G. Ponyatovsky, Scr. Mater. 16, 203 (1982).
  28. V.E. Antonov, I.T. Belash, E.G. Ponyatovskii, V.G. Thiessen, and V. I. Shiryaev, Phys. Status Solidi A 65, K43 (1981).
  29. V.E. Antonov, I.T. Belash, V.F. Degtyareva, D.N. Mogilyansky, B.K. Ponomarev, and V. S. Shekhtman, Sov. Phys. Dokl. 14, 371 (1989).
  30. V.E. Antonov, K. Cornell, V.K. Fedotov, A. I. Kolesnikov, E.G. Ponyatovsky, V. I. Shiryaev, and H. Wipf, J. Alloys Compounds 264(1-2), 214 (1998).
  31. V.E. Antonov, M. Baier, B. Dorner, V.K. Fedotov, G. Grosse, A. I. Kolesnikov, E.G. Ponyatovsky, G. Schneider, and F. E. Wagner, J. Phys. Condens. Matter 14, 6427 (2002).
  32. Y. Fukai, M. Yamakata, and T. Yagi, Z. F¨ur Phys. Chem. 179, 119 (1993).
  33. H. Saitoh, A. Machida, H. Sugimoto, T. Yagi, K. Aoki, and K. Aoki, J. Alloys Compd. 706, 520 (2017).
  34. M. Yamakata, T. Yagi, W. Utsumi, and Y. Fukai, Proc. Jpn. Acad. Ser. B 68, 172 (1992).
  35. I. Choe, R. Ingalls, J.M. Brown, Y. Sato-Sorensen, and R. Mills, Phys. Rev. B 44, 1 (1991).
  36. J.V. Badding, R. J. Hemley, and H.K. Mao, Science 253, 421 (1991).
  37. K. Sakamaki, E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, Phys. Earth Planet. Inter. 174, 192 (2009).
  38. O. Narygina, L. Dubrovinsky, C. McCammon, A. Kurnosov, I. Kantor, V.B. Prakapenka, and N. Dubrovinskaia, Earth Planet. Sci. Lett. 307, 409 (2011).
  39. C. Kato, K. Umemoto, K. Ohta, S. Tagawa, K. Hirose, and Y. Ohishi, Am. Mineral. 105, 917 (2020).
  40. A. Machida, H. Saitoh, T. Hattori, A. Sano-Furukawa, K. Funakoshi, T. Sato, S. I. Orimo, K. Aoki, and K. Aoki, Sci. Rep. 9, 12290 (2019).
  41. K. Ohta, S. Suehiro, K. Hirose, and Y. Ohishi, Comptes Rendus Geosci. 351, 147 (2019).
  42. J. Ying, J. Zhao, W. Bi, E.E. Alp, Y. Xiao, P. Chow, G. Shen, and V.V. Struzhkin, Phys. Rev. B 101, 020405(R) (2020).
  43. E.C. Thompson, A.H. Davis, W. Bi, J. Zhao, E.E. Alp, D. Zhang, E. Greenberg, V.B. Prakapenka, and A. J. Campbell, Geochem. Geophys. Geosyst. 19, 305 (2018).
  44. A. Majumdar, J. S. Tse, M. Wu, and Y. Yao, Phys. Rev. B 96, 201107(R) (2017).
  45. C. Heil, G.B. Bachelet, and L. Boeri, Phys. Rev. B 97, 214510 (2018).
  46. A. Gavriliuk, I. Trojan, S. Aksenov, O. Leupold, I. Sergeev, H. Wille, A. Mironovich, I. Lyubutin, and V. Struzhkin, EPSC-DPS Joint Meeting 2019 13, EPSC-DPS2019-886 (2019).
  47. I. S. Lyubutin, I.A. Troyan, and A.G. Gavrilyuk, XVI International Conference M¨ossbauer Spectroscopy and its Applications, XVII ICMSA, 5-9 September, Ekaterinburg, Russia (2022), p. 69.
  48. A.G. Gavriliuk, V.V. Struzhkin, S.N. Aksenov, A.A. Mironovich, I.A. Troyan, A.G. Ivanova, and I. S. Lyubutin, JETP Lett. 117, 126 (2023).
  49. A.G. Gavriliuk, V.V. Struzhkin, S.N. Aksenov, A.G. Ivanova, A.A. Mironovich, I.A. Troyan, and I. S. Lyubutin, JETP Lett. 116, 804 (2022).
  50. Yu.V. Kondrat'ev, A.V. Butlak, I.V. Kazakov, and A.Y. Timoshkin, Thermochimica Acta 622, 64 (2015).
  51. H.-K. Mao, W.A. Bassett, and T. Takahashi, J. Appl. Phys. 38, 272 (1967).
  52. N.V. Barge and R. Boehler, High Pressure Research 6, 133 (1990).
  53. R. Boehler, N. v. Bargen, and A. Chopelas, J. Geophys. Res. 95, 21731 (1990).
  54. Y. Akahama and H. Kawamura, J. Appl. Phys. 100, 043516 (2006).
  55. H.E. Swanson, R.K. Fuyat, and G.M. Urginic, Natl. Bur. Stand. (U.S.) IV, 3 (1955).
  56. D. Daghero and R. S. Gonnelli, Supercond. Sci. Technol. 23, 043001 (2010).
  57. Z.-Y. Cao, H. Jang, S. Choi, J. Kim, S. Kim, J.-B. Zhang, A. S. Sharbirin, J. Kim, and T. Park, NPG Asia Mater. 15, 5 (2023).
  58. S.A. Kuzmichev and T. E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016).
  59. N. Hirao, Y. Akahama, and Y. Ohishi, Matter and Radiation at Extremes 7, 038403 (2022).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies