Osobennosti breggovskikh rezonansov v magnonnom kristalle s dvumya periodami

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Specific features of Bragg resonances in a magnonic crystal with a metallic grating on the surface with two periods have been revealed. A theoretical model describing the spectral characteristics of magnetostatic waves has been constructed by matching the permeabilities of the metal layer and the ferromagnetic film at the interface between them and using the coupled-wave analysis. The distribution of the magnetization amplitude at each Bragg resonance frequency has been calculated by the finite-element method. It has been shown that three Bragg resonances in the first Brillouin zone for the grating with a smaller period and one resonance in the first Brillouin zone for the grating with a larger period are formed in this structure. Resonance frequencies are determined by the ratio of the large and small periods.

About the authors

M. A. Morozova

Saratov State University

Email: mamorozovama@yandex.ru
410012, Saratov, Russia

O. V. Matveev

Saratov State University

Email: mamorozovama@yandex.ru
410012, Saratov, Russia

A. S. Ptashenko

Saratov State University

Email: mamorozovama@yandex.ru
410012, Saratov, Russia

A. V. Sadovnikov

Saratov State University

Email: mamorozovama@yandex.ru
410012, Saratov, Russia

S. A. Nikitov

Saratov State University; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: mamorozovama@yandex.ru
410012, Saratov, Russia; 125009, Moscow, Russia

References

  1. A. Kimel, A. Zvezdin, S. Sharma et al. (Collaboration), Journal of Physics D: Applied Physics 55(46), 463003 (2022).
  2. С. А. Никитов, А. Р. Сафин, Д. В. Калябин, А. В. Садовников, Е. Н. Бегинин, М. В. Логунов, М. А. Морозова, С. А. Одинцов, С. А. Осокин, А. Ю. Шараевская, Ю. П. Шараевский, А. И. Кирилюк, Успехи физических наук 190(10), 1009 (2020).
  3. A. Chumak, A. Serga, and B. Hillebrands, Journal of Physics D: Applied Physics 50(24), 244001 (2017).
  4. M. Krawczyk and D. Grundler, J. Phys. Condens. Matter 26(12), 123202 (2014).
  5. R. A. Gallardo, T. Schneider, A. Rold'an-Molina, M. Langer, A. Nu'nez, K. Lenz, J. Lindner, and P. Landeros, Phys. Rev. B 97(17), 174404 (2018).
  6. С. Л. Высоцкий, Ю. В. Хивинцев, Ю. А. Филимонов, С. А. Никитов, А. И. Стогний, Н. Н. Новицкий, Письма в Журнал технической физики 41(22), 66 (2015).
  7. M. Morozova, O. Matveev, Y. P. Sharaevskii, S. Nikitov, and A. Sadovnikov, Appl. Phys. Lett. 120(12), 122407 (2022).
  8. K. Di, V. L. Zhang, M. H. Kuok, H. S. Lim, S. C. Ng, K. Narayanapillai, and H. Yang, Phys. Rev. B 90(6), 060405 (2014).
  9. V. Zhang, H. Lim, S. Ng, M. Kuok, X. Zhou, and A. Adeyeye, AIP Advances 6(11), 115106 (2016).
  10. I. P. Coelho, M. S. d. Vasconcelos, and C. G. Bezerra, Solid State Commun. 150(37-38), 1760 (2010).
  11. S. V. Grishin, O. I. Moskalenko, A. N. Pavlov, D. V. Romanenko, A. V. Sadovnikov, Y. P. Sharaevskii, I. V. Sysoev, T. M. Medvedeva, E. P. Seleznev, and S. A. Nikitov, Phys. Rev. Appl. 16(5), 054029 (2021).
  12. P. Emtage, J. Appl. Phys. 49(8), 4475 (1978).
  13. L. N. Brillouin, Wave propagation in periodic structures: electric lters and crystal lattices, Dover, N.Y. (1953).
  14. D. Marcuse, Light transmission optics, Cincinnati: Bell Laboratory Series, N.Y. (1972).
  15. А. В. Вашковский, В. С. Стальмахов, Ю. П. Шараевский, Магнитостатические волны в электронике сверхвысоких частот: учебное пособие для физ. спец. ун-тов, из-во Саратовского университета, Саратов (1993).
  16. А. Г. Гуревич, Г. А. Мелков, Магнитные колебания и волны, Наука, М. (1994).
  17. G. Gubbiotti, A. Sadovnikov, S. Sheshukova, E. Beginin, S. Nikitov, G. Talmelli, C. Adelmann, and F. Ciubotaru, J. Appl. Phys. 132(8), 083902 (2022).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies