Наклон и анизотропия дираковского спектра, вызванные перекрытием блоховских функций

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Показано, что в системах с дираковскими точками, возникающими при пересечении зон, принадлежащих эквивалентным представлениям группы симметрии возможно перекрытие этих зон. Такое перекрытие приводит к наклону и дополнительной анизотропии дираковского спектра, а также перенормировке скорости. В то же время, учет перекрытия не нарушает общих условий существования устойчивой точки пересечения зон. Эффективный дираковский гамильтониан при наличии перекрытия зон является псевдоэрмитовым и соответствует эффективному действию безмассового спинорного поля в искривленном пространстве-времени.

Об авторах

З. З Алисултанов

Московский физико-технический институт (МФТИ);Дагестанский федеральный исследовательский центр РАН

Email: zaur0102@gmail.com

Н. А Демиров

Объединенный институт высоких температур РАН (ОИВТРАН)

Список литературы

  1. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
  2. P. A. Dirac, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 117, 610 (1928).
  3. H. Weyl, Proc. Natl. Acad. Sci. USA 15(4), 323 (1929).
  4. S. Murakami, New J. Phys. 9(9), 356 (2007).
  5. S. Murakami, S. Iso, Y. Avishai, M. Onoda, and N. Nagaosa, Phys. Rev. B 76, 205304 (2007).
  6. M. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge University Press, Cambridge (2012).
  7. E. Kogan and V. U. Nazarov, Phys. Rev. B 85, 115418 (2012).
  8. B. Bradlyn, J. Cano, Z. Wang, M. Vergniory, C. Felser, R. Cava, and B. A. Bernevig, Science 353, aaf5037 (2016).
  9. A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527(7579), 495 (2015).
  10. B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Phys. Rev. Lett. 116, 186402 (2016).
  11. З. З. Алисултанов, ЖЭТФ 152(5), 986 (2017).
  12. З. З. Алисултанов, Письма в ЖЭТФ 107(4), 260 (2018).
  13. C. Herring, Phys. Rev. 52, 365 (1937).
  14. E. Antoncık and P. T. Landsberg, Proc. Phys. Soc. 82, 337342 (1963).
  15. V. Halpern, J. Phys. Chem. Solids 24, 14951502 (1963).
  16. N. Bernstein, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 66, 075212 (2002).
  17. W. A. Harrison and S. Ciraci, Phys. Rev. B 10, 1516 (1974).
  18. J. Tejeda and N. J. Shevchik, Phys. Rev. B 13, 2548 (1976).
  19. T. B. Boykin, P. Sarangapani, and G. Klimeck, J. Appl. Phys. 125, 144302 (2019).
  20. C. Herring, Phys. Rev. 52, 361 (1937).
  21. C. Kittel, Quantum Theory of Solids, Wiley, N.Y. (1963).
  22. A. Mostafazadeh, J. Math. Phys. 43, 205214 (2002).
  23. A. Mostafazadeh, J. Math. Phys. 43, 28142816 (2002).
  24. A. Mostafazadeh, J. Math. Phys. 43, 39443951 (2002).
  25. Z. Z. Alisultanov and E. G. Idrisov, Phys. Rev. B 107, 085135 (2023).
  26. J. Nissinen and G. E. Volovik, JETP Lett. 105, 442 (2017).
  27. J. Nissinen and G. E. Volovik, JETP 127, 948957 (2018).
  28. G. E. Volovik, Black hole and Hawking radiation by type-II Weyl fermions, JETP Lett. 104, 645 (2016), arXiv:1610.00521
  29. Y. Kedem, E. J. Bergholtz, and F. Wilczek, Phys. Rev. Research 2, 043285 (2020).
  30. I. Proskurin, M. Ogata, and Y. Suzumura, Phys. Rev. B 91, 195413 (2015).
  31. M. Mili'cevi'c, G. Montambaux, T. Ozawa, O. Jamadi, B. Real, I. Sagnes, A. Lemaˆıtre, L. Le Gratiet, A. Harouri, J. Bloch, and A. Amo Phys. Rev. X 9, 031010 (2019).
  32. A. Wild, E. Mariani, and M. E. Portnoi, Phys. Rev. B 105, 205306 (2022).
  33. Y. Yekta, H. Hadipour, and S. A. Jafari, Commun. Phys. 6, 46 (2023).

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах