Обращение преобразования Абеля–Прима при наличии дополнительной инволюции
- Авторы: Шейнман О.К.1
-
Учреждения:
- Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
- Выпуск: Том 216, № 12 (2025)
- Страницы: 125-144
- Раздел: Статьи
- URL: https://journals.rcsi.science/0368-8666/article/view/358686
- DOI: https://doi.org/10.4213/sm10349
- ID: 358686
Цитировать
Аннотация
Библиография: 14 названий.
Ключевые слова
Об авторах
Олег Карлович Шейнман
Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
Email: sheinman@mi-ras.ru
Scopus Author ID: 6603235446
ResearcherId: Q-4145-2016
доктор физико-математических наук, без звания
Список литературы
- O. Babelon, D. Bernard, M. Talon, Introduction to classical integrable systems, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2003, xii+602 pp.
- V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, Multi-dimensional sigma-functions
- J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp.
- K. Gawȩdzki, P. Tran-Ngoc-Bich, “Hitchin systems at low genera”, J. Math. Phys., 41:7 (2000), 4695–4712
- B. van Geemen, E. Previato, “On the Hitchin system”, Duke Math. J., 85:3 (1996), 659–683
- B. van Geemen, A. J. de Jong, “On Hitchin's connection”, J. Amer. Math. Soc., 11:1 (1998), 189–228
- N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114
- O. K. Sheinman, Bin Wang, “Hitchin systems: some recent advances”, УМН, 79:4(478) (2024), 131–168
Дополнительные файлы

