Том 213, № 8 (2022)
- Год: 2022
- Статей: 4
- URL: https://journals.rcsi.science/0368-8666/issue/view/7492
Представление инвариантных подпространств в пространстве Шварца
Аннотация
Рассматривается инвариантное относительно дифференцирования подпространство $W$ в пространстве Шварца $C^{\infty} (a;b)$ такое, что спектр сужения оператора дифференцирования на $W$ дискретен. Изучаются условия представимости $W$ в виде прямой алгебраической и топологической суммы двух его подпространств: резидуального подпространства и подпространства, порожденного экспоненциальными одночленами, содержащимися в $W$. Выясняется, что условием, обеспечивающим указанное представление, является наличие функционала, аннулирующего $W$, со свойством: преобразование Фурье–Лапласа этого функционала – медленно убывающая целая функция. Вводится и изучается новая характеристика комплексной последовательности. При помощи этой характеристики условие равенства инвариантного подпространства прямой сумме его резидуального и экспоненциального подпространств представляется в форме аналогичной по виду найденным ранее условиям допустимостислабого спектрального синтеза.Библиография: 19 названий.
Математический сборник. 2022;213(8):3-25
3-25
Внутренние функции матричного аргумента и классы сопряженности в унитарных группах
Аннотация
Обозначим через $\mathrm B_n$ множество комплексных квадратных матриц порядка$n$, чьи евклидовы операторные нормы меньше 1. Его граница Шилова – множество $\operatorname{U}(n)$ всех унитарных матриц. Голоморфное отображение $\mathrm B_m\to\mathrm B_n$ назовем внутренним, если оно отображает $\operatorname{U}(m)$ в $\operatorname{U}(n)$. С другой стороны, рассмотрим группу $\operatorname{U}(n+mj)$ и ее подгруппу $\operatorname{U}(j)$, вложенную в $\operatorname{U}(n+mj)$ блочно-диагонально ($m$ блоков $\operatorname{U}(j)$ и единичный блок размера $n$). Классу сопряженности в $\operatorname{U}(n+mj)$ относительно подгруппы $\operatorname{U}(j)$ мы ставим в соответствие “характеристическую функцию”, которая является рациональным внутренним отображением $\mathrm B_m\to\mathrm B_n$. Мы показываем, что класс внутренних функций, которые могут быть получены как характеристические функции, замкнут относительно естественных операций таких, как поточечные прямые суммы, поточечные произведения, композиции, подстановки в конечномерные представления полной линейной группы и др. Мы также явно описываем соответствующие классы сопряженности.Библиография: 24 названия.
Математический сборник. 2022;213(8):26-43
26-43
О мультипликаторах рядов Фурье по ортогональным многочленам Соболева
Аннотация
В статье изучаются мультипликаторы рядов Фурье по многочленам, ортогональным в континуально-дискретных пространствах Соболева. Получены результаты о существовании и оценке нормы мультипликаторного оператора. Доказательства утверждений основаны на представлении ядра Фейера, построении “горбатых мажорант” и оценках нормы максимальных функций.Библиография: 45 названий.
Математический сборник. 2022;213(8):44-82
44-82
Гензелевы алгебры с делением и приведенные унитарные группы Уайтхеда для внешних форм анизотропных алгебраических групп типа $A_n$
Аннотация
Получены результаты о строении инволютивных гензелевых слабо разветвленных алгебр с делением, которые затем используются при получении формул для вычисления приведенных унитарных групп Уайтхеда внешних форм анизотропных алгебраических групп типа $A_n$.Библиография: 46 названий.
Математический сборник. 2022;213(8):83-148
83-148

