Связное компактное локально чебышёвское множество в конечномерном пространстве является чебышёвским

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пусть $X$ – банахово пространство. Множество $M\subset X$ называется чебышёвским, если для каждой точки $x\in X$ существует единственная ближайшая к $x$ точка в множестве $M$. Множество $M$ называется локально чебышёвским, если для каждой точки $x\in M$ найдется такое чебышёвское множество $F_x\subset M$, что некоторая окрестность $x$ в $M$ лежит в $F_x$. В статье доказывается, что всякое связное компактное локально чебышёвское множество в конечномерном нормированном пространстве является чебышёвским.Библиография: 11 названий.

Об авторах

Константин Сергеевич Шкляев

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: konstantin.shklyaev@inbox.ru
без ученой степени, без звания

Список литературы

  1. А. А. Флеров, “Локально чебышевские множества на плоскости”, Матем. заметки, 97:1 (2015), 142–149
  2. A. R. Alimov, “On approximative properties of locally Chebyshev sets”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:1 (2018), 36–42
  3. А. Р. Алимов, И. Г. Царьков, “Связность и солнечность в задачах наилучшего и почти наилучшего приближения”, УМН, 71:1(427) (2016), 3–84
  4. А. А. Флеров, Избранные геометрические свойства множеств с конечнозначной метрической проекцией, Дисс. … канд. физ.-матем. наук, МГУ, М., 2016, 68 с.
  5. Л. П. Власов, “Аппроксимативные свойства множеств в линейных нормированных пространствах”, УМН, 28:6(174) (1973), 3–66
  6. А. Р. Алимов, М. И. Карлов, “Множества с внешним чебышевским слоем”, Матем. заметки, 69:2 (2001), 303–307
  7. A. Czarnecki, M. Kulczycki, W. Lubawski, “On the connectedness of boundary and complement for domains”, Ann. Polon. Math., 103:2 (2011), 189–191
  8. А. Т. Фоменко, Д. Б. Фукс, Курс гомотопической топологии, Наука, М., 1989, 496 с.
  9. В. В. Прасолов, Элементы теории гомологий, МЦНМО, М., 2006, 448 с.
  10. А. Д. Александров, Н. Ю. Нецветаев, Геометрия, 2-е изд., БХВ-Петербург, СПб., 2010, 612 с.
  11. M. Brown, “A proof of the generalized Schoenflies theorem”, Bull. Amer. Math. Soc., 66:2 (1960), 74–76

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шкляев К.С., 2020

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).