Functions of density with respect to a model function of growth

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The properties of general density functions with respect to a model function of growth $M$ and related semiadditive functions are discussed. The concept of function of slow growth with respect to the model function of growth $M$ is introduced; it is shown that the function $L(r)= M^{-\rho}(r)v()r)$ has a slow growth with respect to $M$. The concept of $\rho$-semiadditive function with respect to $M$ is also introduced and the main properties of such functions are established. Density functions are studied; a criterion of the continuity of the density $N_M(\alpha)$ and lower density $\underline N_M(\alpha)$ of a function $f$ is obtained. A uniformity theorem is proved. The main properties of $\rho$-additive and -semiadditive functions with respect to the model function $M$ are presented. POn of the central results is a theorem that can be viewed as an extension of Polya's theorem on the existence of minimal and maximal densities to a wider class of functions, whose growth is bounded by an arbitrary model function of growth $M$. Examples of function $f$ and their density functions are presented.

Sobre autores

Mikhail Kabanko

Faculty of Physics, Mathematics, Computer Science, Kursk State University, Kursk, Russia

Email: kabankom@mail.ru
ORCID ID: 0000-0002-9537-3699
Código SPIN: 1935-3162
Scopus Author ID: 57211399602
Researcher ID: AAH-4614-2021
Candidate of physico-mathematical sciences, Associate professor

Konstantin Malyutin

Faculty of Physics, Mathematics, Computer Science, Kursk State University, Kursk, Russia

Email: malyutinkg@gmail.com
ORCID ID: 0000-0001-5480-0722
Doctor of physico-mathematical sciences, Professor

Taisiya Malyutina

Faculty of Physics, Mathematics, Computer Science, Kursk State University, Kursk, Russia

Email: malyutinkg@gmail.com
Candidate of physico-mathematical sciences

Bibliografia

  1. G. Polya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Z., 29:1 (1929), 549–640
  2. N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp.
  3. J. Korevaar, T. van Aardenne-Ehrenfest, N. G. de Bruijn, “A note on slowly oscillating functions”, Nieuw Arch. Wiskunde (2), 23 (1949), 77–86
  4. K. Malyutin, M. Kabanko, “On the proximate order with respect to the model function”, J. Math. Sci. (N.Y.), 280:5 (2024), 692–709
  5. K. Malyutin, M. Kabanko, “The spaces of delta-subharmonic functions of finite order with respect to the model function of growth”, Lobachevskii J. Math., 45:1 (2024), 462–471
  6. H. Steinhaus, “Sur les distances des points des ensembles de mesure positive”, Fund. Math., 1 (1920), 93–104

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Kabanko M.V., Malyutin K.G., Malyutina T.I., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).