Commuting homogeneous locally nilpotent derivations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let $X$ be an affine algebraic variety endowed with an action of complexity one of an algebraic torus $\mathbb T$. It is well known that homogeneous locally nilpotent derivations on the algebra of regular functions $\mathbb K[X]$ can be described in terms of proper polyhedral divisors corresponding to the $\mathbb T$-variety $X$. We prove that homogeneous locally nilpotent derivations commute if and only if a certain combinatorial criterion holds. These results are used to describe actions of unipotent groups of dimension two on affine $\mathbb T$-varieties.Bibliography: 10 titles.

Sobre autores

Dmitry Matveev

Faculty of Computer Science, National Research University "Higher School of Economics"

without scientific degree, no status

Bibliografia

  1. K. Altmann, J. Hausen, “Polyhedral divisors and algebraic torus action”, Math. Ann., 334:3 (2006), 557–607
  2. I. Arzhantsev, A. Liendo, “Polyhedral divisors and $operatorname{SL}_2$-actions on affine $mathbb{T}$-varieties”, Michigan Math. J., 61:4 (2012), 731–762
  3. D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
  4. G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory Algebr. Transform. Groups, VII, Springer-Verlag, Berlin, 2006, xii+261 pp.
  5. W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
  6. A. Liendo, “$mathbb{G}_{mathrm{a}}$-actions of fiber type on affine $mathbb{T}$-varieties”, J. Algebra, 324:12 (2010), 3653–3665
  7. A. Liendo, “Affine $mathbb{T}$-varieties of complexity one and locally nilpotent derivations”, Transform. Group, 15:2 (2010), 389–425
  8. E. Romaskevich, “Sums and commutators of homogeneous locally nilpotent derivations of fiber type”, J. Pure Appl. Algebra, 218:3 (2014), 448–455
  9. Э. Б. Винберг, В. Л. Попов, “Теория инвариантов”, Алгебраическая геометрия – 4, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 55, ВИНИТИ, М., 1989, 137–309
  10. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Matveev D.A., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).