Классификация слоений Лиувилля интегрируемых топологических биллиардов в магнитном поле

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе изучена топология слоений Лиувилля интегрируемых магнитных топологических биллиардов – систем движения шара по кусочно гладким двумерным поверхностям в постоянном магнитном поле. Вычислены инварианты Фоменко–Цишанга лиувиллевой эквивалентности возникающих гамильтоновых систем, а также изучена топология трехмерных инвариантных многообразий – изоинтегральных и изоэнергетических. Также обнаружена лиувиллева эквивалентность таких биллиардов с уже известными гамильтоновыми системами, такими как геодезические потоки на двумерных поверхностях и системы динамики твердого тела. В частности, обнаружены интересные седловые особенности с разным направлением особых окружностей, которые также встречались ранее в механических системах с магнитным полем на поверхностях вращения, гомеоморфных двумерной сфере.Библиография: 13 названий.

Об авторах

Виктория Викторовна Ведюшкина

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: arinir@yandex.ru
доктор физико-математических наук

Сергей Евгеньевич Пустовойтов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: pustovoitovse1@mail.ru

Список литературы

  1. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
  2. M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp.
  3. В. В. Ведюшкина, “Инварианты Фоменко–Цишанга невыпуклых топологических биллиардов”, Матем. сб., 210:3 (2019), 17–74
  4. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
  5. Е. А. Кудрявцева, А. А. Ошемков, “Бифуркации интегрируемых механических систем с магнитным полем на поверхностях вращения”, Чебышевский сб., 21:2 (2020), 244–265
  6. А. Т. Фоменко, “Симплектическая топология вполне интегрируемых гамильтоновых систем”, УМН, 44:1(265) (1989), 145–173
  7. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  8. А. Т. Фоменко, В. В. Ведюшкина, “Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 15–25
  9. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
  10. A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
  11. В. В. Ведюшкина, В. А. Кибкало, А. Т. Фоменко, “Топологическое моделирование интегрируемых систем биллиардами: реализация числовых инвариантов”, Докл. РАН. Матем., информ., проц. упр., 493 (2020), 9–12
  12. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
  13. Е. О. Кантонистова, “Топологическая классификация интегрируемых гамильтоновых систем на поверхностях вращения в потенциальном поле”, Матем. сб., 207:3 (2016), 47–92

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ведюшкина В.В., Пустовойтов С.Е., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).