Birational geometry of singular Fano double spaces of index two

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We describe the birational geometry of Fano double spaces $V\stackrel{\sigma}{\to}{\mathbb P}^{M+1}$ of index 2 and dimension ${\geqslant 8}$ with at most quadratic singularities of rank ${\geqslant 8}$, satisfying certain additional conditions of general position: we prove that these varieties have no structures of a rationally connected fibre space over a base of dimension ${\geqslant2}$, that every birational map $\chi\colon V\dashrightarrow V'$ onto the total space of a Mori fibre space $V'/{\mathbb P}^1$ induces an isomorphism $V^+\cong V'$ of the blow-up $V^+$ of $V$ along $\sigma^{-1}(P)$, where $P\subset {\mathbb P}^{M+1}$ is a linear subspace of codimension 2, and that every birational map of $V$ onto a Fano variety $V'$ with ${\mathbb Q}$-factorial terminal singularities and Picard number 1 is an isomorphism. We give an explicit lower estimate, quadratic in $M$, for the codimension of the set of varieties $V$ that have worse singularities or do not satisfy the conditions of general position. The proof makes use of the method of maximal singularities and the improved $4n^2$-inequality for the self-intersection of a mobile linear system. Bibliography: 20 titles.

Авторлар туралы

Aleksandr Pukhlikov

Department of Mathematical Sciences, University of Liverpool

Email: pukh@liv.ac.uk
Doctor of physico-mathematical sciences, no status

Әдебиет тізімі

  1. А. В. Пухликов, “Бирациональная геометрия двойных пространств Фано индекса два”, Изв. РАН. Сер. матем., 74:5 (2010), 45–114
  2. F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18
  3. А. В. Пухликов, “Бирационально жесткие расслоения Фано. II”, Изв. РАН. Сер. матем., 79:4 (2015), 175–204
  4. A. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp.
  5. А. В. Пухликов, “Бирациональная геометрия прямых произведений Фано”, Изв. РАН. Сер. матем., 69:6 (2005), 153–186
  6. A. V. Pukhlikov, “Birational geometry of singular Fano hypersurfaces of index two”, Manuscripta Math., 161:1-2 (2020), 161–203
  7. A. V. Pukhlikov, “The $4n^2$-inequality for complete intersection singularities”, Arnold Math. J., 3:2 (2017), 187–196
  8. A. V. Pukhlikov, “Birational geometry of Fano hypersurfaces of index two”, Math. Ann., 366:1 (2016), 721–782
  9. F. Suzuki, “Birational rigidity of complete intersections”, Math. Z., 285:1-2 (2017), 479–492
  10. А. В. Пухликов, “Бирационально жесткие гиперповерхности Фано”, Изв. РАН. Сер. матем., 66:6 (2002), 159–186
  11. I. Krylov, “Birational geometry of del Pezzo fibrations with terminal quotient singularities”, J. Lond. Math. Soc. (2), 97 (2018), 222–246
  12. H. Ahmadinezhad, “Singular del Pezzo fibrations and birational rigidity”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 3–15
  13. I. Cheltsov, J. Park, “Sextic double solids”, Cohomological and geometric approaches to rationality problems, Progr. Math., 282, Birkhäuser Boston, Boston, MA, 2010, 75–132
  14. D. Foord, “Birationally rigid Fano cyclic covers over a hypersurface containing a singular point”, Eur. J. Math., Publ. online: 2020, 1–16
  15. A. V. Pukhlikov, “Birationally rigid complete intersections with a singular point of high multiplicity”, Proc. Edinb. Math. Soc. (2), 62:1 (2019), 221–239
  16. В. А. Исковских, Ю. И. Манин, “Трехмерные квартики и контрпримеры к проблеме Люрота”, Матем. сб., 86(128):1(9) (1971), 140–166
  17. В. А. Исковских, “Бирациональные автоморфизмы трехмерных алгебраических многообразий”, Итоги науки и техн. Сер. Соврем. пробл. мат., 12, ВИНИТИ, М., 1979, 159–236
  18. А. В. Пухликов, “Бирациональные автоморфизмы двойного пространства и двойной квадрики”, Изв. АН СССР. Сер. матем., 52:1 (1988), 229–239
  19. Th. Eckl, A. Pukhlikov, “On the locus of nonrigid hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 121–139
  20. Th. Eckl, A. Pukhlikov, “Effective birational rigidity of Fano double hypersurfaces”, Arnold Math. J., 4:3-4 (2018), 505–521

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pukhlikov A.V., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).