On nonexistence of negative weight derivations on moduli algebras: Yau's conjecture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $A=\mathbb{F}[x_1,…,x_n]/(f_1,…,f_n)$ be a graded complete intersection Artinian algebra where $\mathbb{F}$ is a field of characteristic zero. The grading on $A$ induces a natural grading on $\operatorname{Der}_{\mathbb{F}}(A)$. Halperin proposed a famous conjecture: $\operatorname{Der}_{\mathbb{F}}(A)_{<0}=0$, which implies the collapsing of the Serre spectral sequence for an orientable fibration with fibre an elliptic space with no cohomology in odd degrees. In the context of singularity theory the second author proposed the same conjecture in the special case when $f_i=\partial f/\partial x_i$ for a single polynomial $f$.
H. Chen, the second author and Zuo [5] proved Halperin's conjecture assuming that the degrees of the $f_i$ are bounded below by a constant depending on the number $n$ of variables and the degrees of variables. In this paper, in the special case when $f_i=\partial f/\partial x_i$ for a single polynomial $f$, we refine their result by giving a better bound, which is independent of $n$.

About the authors

Bingyi Chen

Department of Mathematics, Sun Yat-sen University, Guangzhou, P.R. China

Email: chenby253@mail.sysu.edu.cn; chenby16@tsinghua.org.cn
PhD, no status

Stephen Shing-Toung Yau

Department of Mathematical Sciences, Tsinghua University, Beijing, P.R. China; Beijing Institute of Mathematical Sciences and Applications, Beijing, P.R. China

Email: yau@uic.edu
PhD, Professor

References

  1. A. G. Aleksandrov, B. Martin, “Derivations and deformations of Artinian algebras”, Beiträge Algebra Geom., 33 (1992)
  2. Hao Chen, “On negative weight derivations of moduli algebras of weighted homogeneous hypersurface singularities”, Math. Ann., 303:1 (1995), 95–107
  3. Hao Chen, “Nonexistence of negative weight derivations on graded Artin algebras: a conjecture of {H}alperin”, J. Algebra, 216:1 (1999), 1–12
  4. Hao Chen, Yi-Jing Xu, S. S.-T. Yau, “Nonexistence of negative weight derivation of moduli algebras of weighted homogeneous singularities”, J. Algebra, 172:2 (1995), 243–254
  5. Hao Chen, S. S.-T. Yau, Huaiqing Zuo, “Non-existence of negative weight derivations on positively graded {A}rtinian algebras”, Trans. Amer. Math. Soc., 372:4 (2019), 2493–2535
  6. Y. Felix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Grad. Texts in Math., 205, Springer-Verlag, New York, 2001, xxxiv+535 pp.
  7. S. Halperin, “Finiteness in the minimal models of Sullivan”, Trans. Amer. Math. Soc., 230 (1977), 173–199
  8. L. Kennard, Yantao Wu, “Halperin's conjecture in formal dimensions up to 20”, Comm. Algebra, 51:8 (2023), 3606–3622
  9. G. Lupton, “Note on a conjecture of Stephen Halperin's”, Topology and combinatorial group theory (Hanover, NH, 1986/1987; Enfield, NH, 1988), Lecture Notes in Math., 1440, Springer-Verlag, Berlin, 1990, 148–163
  10. M. Markl, “Towards one conjecture on collapsing of the {S}erre spectral sequence”, Proceedings of the winter school on geometry and physics (Srni, 1989), Rend. Circ. Mat. Palermo (2) Suppl., 22, Circ. Mat. Palermo, Palermo, 1990, 151–159
  11. W. Meier, “Rational universal fibrations and flag manifolds”, Math. Ann., 258:3 (1981/82), 329–340
  12. S. Papadima, L. Paunescu, “Reduced weighted complete intersection and derivations”, J. Algebra, 183:2 (1996), 595–604
  13. H. Shiga, M. Tezuka, “Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians”, Ann. Inst. Fourier (Grenoble), 37:1 (1987), 81–106
  14. J. C. Thomas, “Rational homotopy of Serre fibrations”, Ann. Inst. Fourier (Grenoble), 31:3 (1981), 71–90
  15. Yi-Jing Xu, S. S.-T. Yau, “Micro-local characterization of quasi-homogeneous singularities”, Amer. J. Math., 118:2 (1996), 389–399
  16. S. S.-T. Yau, Huaiqing Zuo, “Derivations of the moduli algebras of weighted homogeneous hypersurface singularities”, J. Algebra, 457 (2016), 18–25

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Chen B., Yau S.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).