On nonexistence of negative weight derivations on moduli algebras: Yau's conjecture
- Authors: Chen B.1, Yau S.S.2,3
-
Affiliations:
- Department of Mathematics, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Mathematical Sciences, Tsinghua University, Beijing, P.R. China
- Beijing Institute of Mathematical Sciences and Applications, Beijing, P.R. China
- Issue: Vol 217, No 1 (2026)
- Pages: 114-138
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/378952
- DOI: https://doi.org/10.4213/sm10201
- ID: 378952
Cite item
Abstract
Let $A=\mathbb{F}[x_1,…,x_n]/(f_1,…,f_n)$ be a graded complete intersection Artinian algebra where $\mathbb{F}$ is a field of characteristic zero. The grading on $A$ induces a natural grading on $\operatorname{Der}_{\mathbb{F}}(A)$ . Halperin proposed a famous conjecture: $\operatorname{Der}_{\mathbb{F}}(A)_{<0}=0$ , which implies the collapsing of the Serre spectral sequence for an orientable fibration with fibre an elliptic space with no cohomology in odd degrees. In the context of singularity theory the second author proposed the same conjecture in the special case when $f_i=\partial f/\partial x_i$ for a single polynomial $f$ .
H. Chen, the second author and Zuo [5] proved Halperin's conjecture assuming that the degrees of the$f_i$ are bounded below by a constant depending on the number $n$ of variables and the degrees of variables. In this paper, in the special case when $f_i=\partial f/\partial x_i$ for a single polynomial $f$ , we refine their result by giving a better bound, which is independent of $n$ .
H. Chen, the second author and Zuo [5] proved Halperin's conjecture assuming that the degrees of the
About the authors
Bingyi Chen
Department of Mathematics, Sun Yat-sen University, Guangzhou, P.R. China
Email: chenby253@mail.sysu.edu.cn; chenby16@tsinghua.org.cn
PhD, no status
Stephen Shing-Toung Yau
Department of Mathematical Sciences, Tsinghua University, Beijing, P.R. China; Beijing Institute of Mathematical Sciences and Applications, Beijing, P.R. China
Email: yau@uic.edu
PhD, Professor
References
- A. G. Aleksandrov, B. Martin, “Derivations and deformations of Artinian algebras”, Beiträge Algebra Geom., 33 (1992)
- Hao Chen, “On negative weight derivations of moduli algebras of weighted homogeneous hypersurface singularities”, Math. Ann., 303:1 (1995), 95–107
- Hao Chen, “Nonexistence of negative weight derivations on graded Artin algebras: a conjecture of {H}alperin”, J. Algebra, 216:1 (1999), 1–12
- Hao Chen, Yi-Jing Xu, S. S.-T. Yau, “Nonexistence of negative weight derivation of moduli algebras of weighted homogeneous singularities”, J. Algebra, 172:2 (1995), 243–254
- Hao Chen, S. S.-T. Yau, Huaiqing Zuo, “Non-existence of negative weight derivations on positively graded {A}rtinian algebras”, Trans. Amer. Math. Soc., 372:4 (2019), 2493–2535
- Y. Felix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Grad. Texts in Math., 205, Springer-Verlag, New York, 2001, xxxiv+535 pp.
- S. Halperin, “Finiteness in the minimal models of Sullivan”, Trans. Amer. Math. Soc., 230 (1977), 173–199
- L. Kennard, Yantao Wu, “Halperin's conjecture in formal dimensions up to 20”, Comm. Algebra, 51:8 (2023), 3606–3622
- G. Lupton, “Note on a conjecture of Stephen Halperin's”, Topology and combinatorial group theory (Hanover, NH, 1986/1987; Enfield, NH, 1988), Lecture Notes in Math., 1440, Springer-Verlag, Berlin, 1990, 148–163
- M. Markl, “Towards one conjecture on collapsing of the {S}erre spectral sequence”, Proceedings of the winter school on geometry and physics (Srni, 1989), Rend. Circ. Mat. Palermo (2) Suppl., 22, Circ. Mat. Palermo, Palermo, 1990, 151–159
- W. Meier, “Rational universal fibrations and flag manifolds”, Math. Ann., 258:3 (1981/82), 329–340
- S. Papadima, L. Paunescu, “Reduced weighted complete intersection and derivations”, J. Algebra, 183:2 (1996), 595–604
- H. Shiga, M. Tezuka, “Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians”, Ann. Inst. Fourier (Grenoble), 37:1 (1987), 81–106
- J. C. Thomas, “Rational homotopy of Serre fibrations”, Ann. Inst. Fourier (Grenoble), 31:3 (1981), 71–90
- Yi-Jing Xu, S. S.-T. Yau, “Micro-local characterization of quasi-homogeneous singularities”, Amer. J. Math., 118:2 (1996), 389–399
- S. S.-T. Yau, Huaiqing Zuo, “Derivations of the moduli algebras of weighted homogeneous hypersurface singularities”, J. Algebra, 457 (2016), 18–25
Supplementary files

