Nonlinear growth of the Chebyshev norm of matrices under maximal cross approximation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the function $g(n)$ describing the maximal possible growth of the Chebyshev norms of maximal cross approximations of an $n\times n$ matrix, the inequality $4g(2k)\leqslant g(7k+3)$ is proved. The bound $g(n)\geqslant Cn^{\log_{7/2}4}$ is established on this basis.

About the authors

Semyon Sergeevich Fedorovskii

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Email: semenfedorovskiy@gmail.com
without scientific degree, no status

References

  1. J. H. Wilkinson, “Error analysis of direct methods of matrix inversion”, J. ACM, 8:3 (1961), 281–330
  2. L. Tornheim, Pivot size in Gauss reduction, Tech. paper, Chevron Research Co., Richmond, CA, 1964
  3. C. W. Cryer, “Pivot size in Gaussian elimination”, Numer. Math., 12:4 (1968), 335–345
  4. J. Day, B. Peterson, “Growth in Gaussian elimination”, Amer. Math. Monthly, 95:6 (1988), 489–513
  5. N. Gould, “On growth in Gaussian elimination with complete pivoting”, SIAM J. Matrix Anal. Appl., 12:2 (1991), 354–361
  6. A. Edelman, “The complete pivoting conjecture for Gaussian elimination is false”, Mathematica J., 2:2 (1992), 58–61
  7. A. Bisain, A. Edelman, J. Urschel, “A new upper bound for the growth factor in Gaussian elimination with complete pivoting”, Bull. Lond. Math. Soc., 57:5 (2025), 1369–1387
  8. A. Edelman, J. Urschel, “Some new results on the maximum growth factor in Gaussian elimination”, SIAM J. Matrix Anal. Appl., 45:2 (2024), 967–991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Fedorovskii S.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).