Prismatic cohomology and de Rham–Witt forms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For any prism $(A,d)$, we construct an analogue of Fontaine's map $W_r(A/d) \to A/d\phi(d)\cdots\phi^{r-1}(d)$. Subsequently, we define a canonical map from de Rham–Witt forms to prismatic cohomology in the perfect case and prove that it is an isomorphism. Using this result, we obtain an explicit description of the prismatic cohomology $H^i((S/A)_\Prism,\mathcal{O}_\Prism/d\phi(d)\cdots\phi^{n-1}(d))$, where $S$ is the $p$-completion of a polynomial algebra over $A/d$.

About the authors

Semen Vyacheslavovich Molokov

Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia

Email: sam-molokov1@yandex.ru
without scientific degree, no status

References

  1. Y. Andre, “La conjecture du facteur direct”, Publ. Math. Inst. Hautes Etudes Sci., 127 (2018), 71–93
  2. J. Anschütz, A.-C. Le Bras, Prismatic Dieudonne theory
  3. J. Anschütz, A.-C. Le Bras, “The $p$-completed cyclotomic trace in degree 2”, Ann. K-Theory, 5:3 (2020), 539–580
  4. B. Bhatt, Geometric aspects of $p$-adic Hodge theory: prismatic cohomology, Eilenberg Lectures at Columbia Univ.
  5. B. Bhatt, J. Lurie, Absolute prismatic cohomology
  6. B. Bhatt, M. Morrow, P. Scholze, “Integral $p$-adic Hodge theory”, Publ. Math. Inst. Hautes Etudes Sci., 128 (2018), 219–397
  7. B. Bhatt, P. Scholze, “Prisms and prismatic cohomology”, Ann. of Math. (2), 196:3 (2022), 1135–1275
  8. J. Borger, Witt vectors, lambda-rings, and arithmetic jet spaces, Course at the Univ. of Copenhagen, 2016
  9. L. Illusie, “Complexe de de Rham–Witt et cohomologie cristalline”, Ann. Sci. Ecole Norm. Sup. (4), 12:4 (1979), 501–661
  10. L. Illusie, De Rham–Witt complexes and $p$-adic Hodge theory, Pre-notes for Sapporo seminar, March 2011
  11. L. Illusie, M. Raynaud, “Les suites spectrales associees au complexe de de Rham–Witt”, Publ. Math. Inst. Hautes Etudes Sci., 57 (1983), 73–212
  12. A. Joyal, “$delta$-anneaux et vecteurs de Witt”, C. R. Math. Rep. Acad. Sci. Canada, 7:3 (1985), 177–182
  13. A. Langer, T. Zink, “De Rham–Witt cohomology for a proper and smooth morphism”, J. Inst. Math. Jussieu, 3:2 (2004), 231–314
  14. The Stacks project
  15. Yu. J. F. Sulyma, Prisms and Tambara functors I: Twisted powers, transversality, and the perfect sandwich
  16. Yichao Tian, “Finiteness and duality for the cohomology of prismatic crystals”, J. Reine Angew. Math., 2023:800 (2023), 217–257

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Molokov S.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).