Construction of polynomials in bi-involution for singular elements of the dual space of a Lie algebra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A generalization of the well-known problem of he construction of complete full bi-involutive sets of polynomials on the conjugate space of a Lie algebra to the case of singular covectors is considered. A generalization of the Mishchenko–Fomenko method of argument shift to the case of singular covectors if proposed and sufficient conditions for the completeness of the resulting sets are found. Using this method, it is shown that complete bi-involutive sets of polynomials can be constructed for singular covectors in all reductive Lie algebras.

About the authors

Feodor Igorevich Lobzin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Email: fiadat@mail.ru

References

  1. A. V. Bolsinov, P. Zhang, “Jordan–Kronecker invariants of finite-dimensional Lie algebras”, Transform. Groups, 21:1 (2016), 51–86
  2. A. Bolsinov, V. S. Matveev, E. Miranda, S. Tabachnikov, “Open problems, questions and challenges in finite-dimensional integrable systems”, Philos. Trans. Roy. Soc. A, 376:2131 (2018), 20170430, 40 pp.
  3. J.-Y. Charbonnel, A. Moreau, “The index of centralizers of elements of reductive Lie algebras”, Doc. Math., 15 (2010), 387–421

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Lobzin F.I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).