Fragments of arithmetic and cyclic proofs
- Авторлар: Beklemishev L.D.1, Shamkanov D.S.1, Smirnov I.N.1,2,3
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Шығарылым: Том 216, № 10 (2025)
- Беттер: 3-28
- Бөлім: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/331243
- DOI: https://doi.org/10.4213/sm10276
- ID: 331243
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Lev Beklemishev
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Email: bekl@mi-ras.ru
ORCID iD: 0000-0002-2949-0600
Scopus Author ID: 6602096489
ResearcherId: F-7814-2013
Doctor of physico-mathematical sciences, no status
Daniyar Shamkanov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Email: daniyar.shamkanov@gmail.com
ORCID iD: 0000-0002-1421-9965
SPIN-код: 2216-1138
Scopus Author ID: 38562114000
ResearcherId: P-5451-2016
Candidate of physico-mathematical sciences, no status
Ivan Smirnov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
Email: smirnov.in@phystech.su
without scientific degree
Әдебиет тізімі
- B. Afshari, G. E. Leigh, “Lyndon interpolation for modal $mu$-calculus”, Language, logic, and computation, Lecture Notes in Comput. Sci., 13206, FoLLI Publ. Log. Lang. Inf., Springer, Cham, 2022, 197–213
- B. Afshari, G. E. Leigh, G. Menendez Turata, “Uniform interpolation from cyclic proofs: the case of modal mu-calculus”, Automated reasoning with analytic tableaux and related methods, Lecture Notes in Comput. Sci., 12842, Lecture Notes in Artificial Intelligence, Springer, Cham, 2021, 335–353
- D. Baelde, A. Doumane, A. Saurin, “Infinitary proof theory: the multiplicative additive case”, Computer science logic 2016, LIPIcs. Leibniz Int. Proc. Inform., 62, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2016, 42, 17 pp.
- L. D. Beklemishev, “Induction rules, reflection principles, and provably recursive functions”, Ann. Pure Appl. Logic, 85:3 (1997), 193–242
- L. D. Beklemishev, “Proof-theoretic analysis by iterated reflection”, Arch. Math. Logic, 42:6 (2003), 515–552
- S. Berardi, M. Tatsuta, “Equivalence of inductive definitions and cyclic proofs under arithmetic”, 2017 32nd annual {ACM/IEEE} symposium on logic in computer science (LICS) (Reykjavik, 2017), IEEE Press, Piscataway, NJ, 2017, 54, 12 pp.
- S. Berardi, M. Tatsuta, “Classical system of Martin-Lof's inductive definitions is not equivalent to cyclic proofs”, Log. Methods Comput. Sci., 15:3 (2019), 10, 25 pp.
- J. Brotherston, “Cyclic proofs for first-order logic with inductive definitions”, Automated reasoning with analytic tableaux and related methods, Lecture Notes in Comput. Sci., 3702, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, 2005, 78–92
- J. Brotherston, R. Bornat, C. Calcagno, “Cyclic proofs of program termination in separation logic”, POPL'08: Proceedings of the 35th annual ACM SIGPLAN–SIGACT symposium on principles of programming languages (San Francisco, CA, 2008), ACM, New York, 2008, 101–112
- J. Brotherston, N. Gorogiannis, R. L. Petersen, “A generic cyclic theorem prover”, Programming languages and systems, Lecture Notes in Comput. Sci., 7705, Springer, Berlin–Heidelberg, 2012, 350–367
- J. Brotherston, A. Simpson, “Sequent calculi for induction and infinite descent”, J. Logic Comput., 21:6 (2011), 1177–1216
- G. Curzi, A. Das, “Computational expressivity of (circular) proofs with fixed points”, 2023 38th annual ACM/IEEE symposium on logic in computer science (LICS) (Boston, MA, 2023), IEEE Comput. Soc. Press, Los Alamitos, CA, 2023, 1–13
- M. Dam, D. Gurov, “$mu$-calculus with explicit points and approximations”, J. Logic Comput., 12:2 (2002), 255–269
- A. Das, “On the logical complexity of cyclic arithmetic”, Log. Methods Comput. Sci., 16:1 (2020), 1, 39 pp.
- A. Das, A circular version of Gödel's T and its abstraction complexity
- A. Das, D. Pous, “Non-wellfounded proof theory for $(Kleene+action)(algebras+lattices)$”, Computer science logic 2018, LIPIcs. Leibniz Int. Proc. Inform., 119, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, 19, 18 pp.
- Ch. Dax, M. Hofmann, M. Lange, “A proof system for the linear time $mu$-calculus”, FSTTCS 2006: Foundations of software technology and theoretical computer science, Lecture Notes in Comput. Sci., 4337, Springer, Berlin, 2006, 273–284
- J. Fortier, L. Santocanale, “Cuts for circular proofs: semantics and cut-elimination”, Computer science logic 2013, LIPIcs. Leibniz Int. Proc. Inform., 23, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2013, 248–262
- P. Hajek, P. Pudlak, Metamathematics of first-order arithmetic, Perspect. Math. Logic, Springer-Verlag, Berlin, 1993, xiv+460 pp.
- S. Hetzl, J. Vierling, “Unprovability results for clause set cycles”, Theoret. Comput. Sci., 935 (2022), 21–46
- E. Jeřabek, “Induction rules in bounded arithmetic”, Arch. Math. Logic, 59:3-4 (2020), 461–501
- N. Jungteerapanich, “A tableau system for the modal $mu$-calculus”, Automated reasoning with analytic tableaux and related methods, Lecture Notes in Comput. Sci., 5607, Lecture Notes in Artificial Intelligence, Springer, Berlin, 2009, 220–234
- R. Kaye, J. Paris, C. Dimitracopoulos, “On parameter free induction schemas”, J. Symb. Log., 53:4 (1988), 1082–1097
- D. Kimura, K. Nakazawa, T. Terauchi, H. Unno, “Failure of cut-elimination in cyclic proofs of separation logic”, Computer Software, 37:1 (2020), 39–52
- M. Kori, T. Tsukada, N. Kobayashi, “A cyclic proof system for $operatorname{HFL}_mathbb{N}$”, Computer science logic 2021, LIPIcs. Leibniz Int. Proc. Inform., 183, 2021, 29, 22 pp.
- S. Negri, J. von Plato, Structural proof theory, Appendix C by A. Ranta, Cambridge Univ. Press, Cambridge, 2001, xviii+257 pp.
- S. Negri, J. von Plato, “Cut elimination in the presence of axioms”, Bull. Symb. Log., 4:4 (1998), 418–435
- D. Niwinski, I. Walukiewicz, “Games for the $mu$-calculus”, Theoret. Comput. Sci., 163:1-2 (1996), 99–116
- R. Nollet, A. Saurin, C. Tasson, “Local validity for circular proofs in linear logic with fixed points”, Computer science logic 2018, LIPIcs. Leibniz Int. Proc. Inform., 119, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, 35, 23 pp.
- Y. Oda, J. Brotherston, M. Tatsuta, “The failure of cut-elimination in cyclic proof for first-order logic with inductive definitions”, J. Logic Comput., 35:2 (2025), exad068, 28 pp.
- C. Parsons, “Hierarchies of primitive recursive functions”, Z. Math. Logik Grundlagen Math., 14:21-24 (1968), 357–376
- L. Santocanale, “A calculus of circular proofs and its categorical semantics”, Foundations of software science and computation structures, Lecture Notes in Comput. Sci., 2303, Springer-Verlag, Berlin, 2002, 357–371
- A. Saurin, “A linear perspective on cut-elimination for non-wellfounded sequent calculi with least and greatest fixed-points”, Automated reasoning with analytic tableaux and related methods, Lecture Notes in Comput. Sci., 14278, Lecture Notes in Artificial Intelligence, Springer, Cham, 2023, 203–222
- H. Schwichtenberg, “Proof theory: some applications of cut-elimination”, Handbook of mathematical logic, Stud. Logic Found. Math., 90, North Holland Publishing Co., Amsterdam, 1977, 867–895
- D. Shamkanov, “Global neighbourhood completeness of the provability logic GLP”, Advances in modal logic, v. 13, College Publications, London, 2020, 581–596
- D. Shamkanov, “On structural proof theory of the modal logic $mathbf K^+$ extended with infinitary derivations”, Log. J. IGPL, 33:3 (2025), jzae121, 46 pp.
- D. S. Shamkanov, “A realization theorem for the modal logic of transitive closure $mathsf{K}^+$”, Изв. РАН. Сер. матем., 89:2 (2025), 189–212
- B. Sierra-Miranda, Th. Studer, L. Zenger, “Coalgebraic proof translations for non-wellfounded proofs”, Advances in modal logic, v. 15, College Publications, London, 2024, 527–548
- A. Simpson, “Cyclic arithmetic is equivalent to {Peano} arithmetic”, Foundations of software science and computation structures, Lecture Notes in Comput. Sci., 10203, Springer-Verlag, Berlin, 2017, 283–300
- I. N. Smirnov, Automated derivation in cyclic arithmetic, Thesis, Moscow Institute of Physics and Technology, 2023
- C. Stirling, “A tableau proof system with names for modal mu-calculus”, HOWARD-60. A festschrift on the occasion of Howard Barringer's 60th birthday, EPiC Ser. Comput., 42, EasyChair, 2014, 306–318
- Th. Studer, “On the proof theory of the modal mu-calculus”, Studia Logica, 89:3 (2008), 343–363
- A. J. Wilkie, J. B. Paris, “On the scheme of induction for bounded arithmetic formulas”, Ann. Pure Appl. Logic, 35:3 (1987), 261–302
Қосымша файлдар
