Distribution of poles of real-valued solutions of the third Painleve equation $P_{\mathrm{III}}^{(6)}$
- Authors: Novokshenov V.Y.1
-
Affiliations:
- Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Issue: Vol 216, No 8 (2025)
- Pages: 155-170
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/306731
- DOI: https://doi.org/10.4213/sm10068
- ID: 306731
Cite item
Abstract
We study a two-parameter family of real solutions of a special Painleve equation of the third kind,which is used in many models of mathematical physics. Using the method of isomonodromic deformations we construct asymptotic formulae as $x\to\infty$ on the real semi-axis, including the distribution of poles of the singular solution. For $n\gg1$ we show that there are no real poles with $x
About the authors
Victor Yur'evich Novokshenov
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
Author for correspondence.
Email: novik53@mail.ru
Doctor of physico-mathematical sciences, Professor
References
- V. I. Gromak, I. Laine, S. Shimomura, Painleve differential equations in the complex plane, De Gruyter Stud. Math., 28, Walter de Gruyter & Co., Berlin, 2002, viii+303 pp.
- Y. Ohyama, H. Kawamuko, H. Sakai, K. Okamoto, “Studies on the Painleve equations. V. Third Painleve equations of special type $P_{mathrm{III}}(D_7)$ and $P_{mathrm{III}}(D_8)$”, J. Math. Sci. Univ. Tokyo, 13:2 (2006), 145–204
- F. Lund, T. Regge, “Unified approach to strings and vortices with soliton solutions”, Phys. Rev. D (3), 14:6 (1976), 1524–1535
- I. V. Barashenkov, D. E. Pelinovsky, “Exact vortex solutions of the complex sine-Gordon theory on the plane”, Phys. Lett. B, 436:1-2 (1998), 117–124
- Y. Bibilo, A. A. Glutsyuk, “On families of constrictions in model of overdamped Josephson junction and Painleve 3 equation”, Nonlinearity, 35:10 (2022), 5427–5480
- C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painleve”, Comm. Math. Phys., 207:3 (1999), 665–685
- D. J. Gross, E. Witten, “Possible third-order phase transition in the large-$N$ lattice gauge theory”, Phys. Rev. D (3), 21:2 (1980), 446–453
- S. R. Wadia, A study of $U(N)$ lattice gauge theory in 2-dimensions
- A. S. Fokas, A. R. Its, A. A. Kapaev, V. Y. Novokshenov, Painleve transcendents. The Riemann–Hilbert approach, Math. Surveys Monogr., 128, Amer. Math. Soc., Providence, RI, 2006, xii+553 pp.
- А. В. Китаев, “Метод изомонодромных деформаций и асимптотики решений “полного” третьего уравнения Пенлеве”, Матем. сб., 134(176):3(11) (1987), 421–444
- В. Ю. Новокшенов, “Подвижные полюсы решений уравнения Пенлеве третьего типа и их связь с функциями Матье”, Функц. анализ и его прил., 20:2 (1986), 38–49
- Г. Бэйтмен, А. Эрдейи, Высшие трансцендентные функции, т. 2, 2-е изд., Наука, М., 1974, 295 с.
- В. И. Громак, Г. В. Филипук, “О функциональных соотношениях между решениями пятого уравнения Пенлеве”, Дифференц. уравнения, 37:5 (2001), 586–591
- F. V. Andreev, A. V. Kitaev, “Connection formulae for asymptotics of the fifth Painleve transcendent on the real axis”, Nonlinearity, 13:5 (2000), 1801–1840
- В. Ю. Новокшенов, “Асимптотические решения дискретного уравнения Пенлеве второго типа”, Матем. заметки, 112:4 (2022), 613–624
- G. V. Dunne, “Resurgence, Painleve equations and conformal blocks”, J. Phys. A, 52:46 (2019), 463001, 31 pp.
- V. Y. Novokshenov, “Distributions of poles to Painleve transcendents via Pade approximations”, Constr. Approx., 39:1 (2014), 85–99
Supplementary files
