Normalization of rationally integrable systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is well known that any analytic vector field near a singular point admits a normalization à la Poincare-Birkhoff, but this normalization is only formal in general, and the problem of analytic (convergent) normalization is a difficult one. In [26] and [27] we proposed a new approach to the normalization of vector fields, via their intrinsic associated torus actions: an analytic vector field is analytically normalizable near a singular point if and only if its associated torus action is analytic (and not just formal). We then showed that if a vector field is analytically integrable, then its associated torus action is analytic, and therefore the vector field is analytically normalizable [26], [27]. In this paper we extend this analytic normalization result to the case of rationally integrable systems, where the first integrals and commuting vector fields are not required to be analytic, but just rational (that is, quotients of analytic functions or vector fields by analytic functions). For example, any vector field of the type $X = f Y$, where Y is an analytically diagonalizable vector field and f is an analytic function such that $Y (f ) = 0$, is rationally integrable but not necessarily analytically integrable.

About the authors

Nguyen Tien Zung

Institut de Mathématiques de Toulouse, Toulouse, France

Author for correspondence.
Email: ntzung@torus.ai

References

  1. M. Ayoul, Nguyen Tien Zung, “Galoisian obstructions to non-Hamiltonian integrability”, C. R. Math. Acad. Sci. Paris, 348:23-24 (2010), 1323–1326
  2. D. Bambusi, G. Cicogna, G. Gaeta, G. Marmo, “Normal forms, symmetry and linearization of dynamical systems”, J. Phys. A, 31:22 (1998), 5065–5082
  3. O. I. Bogoyavlenskij, “A concept of integrability of dynamical systems”, C. R. Math. Rep. Acad. Sci. Canada, 18:4 (1996), 163–168
  4. А. Д. Брюно, Локальный метод нелинейного анализа дифференциальных уравнений, Наука, М., 1979, 253 с.
  5. A. D. Bruno, S. Walcher, “Symmetries and convergence of normalizing transformations”, J. Math. Anal. Appl., 183:3 (1994), 571–576
  6. G. Cicogna, S. Walcher, “Convergence of normal form transformations: the role of symmetries”, Acta Appl. Math., 70:1-3 (2002), 95–111
  7. A. T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Transl. from the Russian, Math. Appl. (Soviet Ser.), 31, Kluwer Acad. Publ., Dordrecht, 1988, xvi+343 pp.
  8. А. Т. Фоменко, “Теория Морса интегрируемых гамильтоновых систем”, Докл. АН СССР, 287:5 (1986), 1071–1075
  9. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  10. H. Ito, “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64:3 (1989), 412–461
  11. H. Ito, “Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case”, Math. Ann., 292:3 (1992), 411–444
  12. Kai Jiang, T. S. Ratiu, Nguyen Tien Zung, “Simultaneous local normal forms of dynamical systems with singular underlying geometric structures”, Nonlinearity, 37:10 (2024), 105013, 38 pp.
  13. T. Kappeler, Y. Kodama, A. Nemethi, “On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 26:4 (1998), 623–661
  14. S. Łojasiewicz, “Sur le problème de la division”, Studia Math., 18 (1959), 87–136
  15. J. J. Morales-Ruiz, J.-P. Ramis, C. Simo, “Integrability of Hamiltonian systems and differential Galois groups of higher variational equations”, Ann. Sci. Ec. Norm. Super. (4), 40:6 (2007), 845–884
  16. R. Roussarie, Modèles locaux de champs et de formes, Asterisque, 30, Soc. Math. France, Paris, 1975, 181 pp.
  17. H. Rüssmann, “Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 154 (1964), 285–300
  18. Л. Зигель, Ю. Мозер, Лекции по небесной механике, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 384 с.
  19. L. Stolovitch, “Normalisation holomorphe d'algèbres de type Cartan de champs de vecteurs holomorphes singuliers”, C. R. Acad. Sci. Paris Ser. I Math., 330:2 (2000), 121–124
  20. L. Stolovitch, “Singular complete integrability”, Inst. Hautes Etudes Sci. Publ. Math., 91 (2000), 133–210
  21. J. Vey, “Algebres commutatives de champs de vecteurs isochores”, Bull. Soc. Math. France, 107:4 (1979), 423–432
  22. J. Vey, “Sur certains systemes dynamiques separables”, Amer. J. Math., 100:3 (1978), 591–614
  23. S. Walcher, “On the Poincare problem”, J. Differential Equations, 166:1 (2000), 51–78
  24. Xiang Zhang, Integrability of dynamical systems: algebra and analysis, Dev. Math., 47, Springer, Singapore, 2017, xv+380 pp.
  25. Nguyen Tien Zung, “A conceptual approach to the problem of action-angle variables”, Arch. Ration. Mech. Anal., 229:2 (2018), 789–833
  26. Nguyen Tien Zung, “Convergence versus integrability in Birkhoff normal form”, Ann. of Math. (2), 161:1 (2005), 141–156
  27. Nguyen Tien Zung, “Convergence versus integrability in Poincare–Dulac normal form”, Math. Res. Lett., 9:2-3 (2002), 217–228
  28. Nguyen Tien Zung, “Geometry of integrable non-Hamiltonian systems”, Geometry and dynamics of integrable systems, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2016, 85–140
  29. Nguyen Tien Zung, Normalization of rationally integrable systems
  30. Нгуен Тьен Зунг, “О свойстве общего положения простых боттовских интегралов”, УМН, 45:4(274) (1990), 161–162
  31. Нгуен Тьен Зунг, Нгуен Тхань Тхьен, “Редукция и интегрируемость стохастических динамических систем”, Фундамент. и прикл. матем., 20:3 (2015), 213–249

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Zung N.T.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).