If a Minkowski billiard is projective, then it is the standard billiard

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the recent paper [5] the first-named author proved that if a billiard in a convex domain in $\mathbb R^n$ is simultaneously projective and Minkowski, then it is the standard Euclidean billiard in an appropriate Euclidean structure. The proof was quite complicated and required high smoothness. Here we present a direct simple proof of this result which works in $C^1$-smoothness. In addition, we prove the semi-local and local versions of this result.

About the authors

Alexey Antonovich Glutsyuk

Higher School of Contemporary Mathematics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; CNRS, UMR 5669 (UMPA, ENS de Lyon), Lyon, France; National Research University Higher School of Economics, Moscow, Russia

Author for correspondence.
Email: aglutsyu@ens-lyon.fr
Doctor of physico-mathematical sciences, no status

Vladimir Sergeevich Matveev

Institute of Mathematics, Friedrich Schiller University of Jena, Jena, Germany

Email: vladimir.matveev@uni-jena.de
Candidate of physico-mathematical sciences, Professor

References

  1. M. Arnold, S. Tabachnikov, “Remarks on Joachimsthal integral and Poritsky property”, Arnold Math. J., 7:3 (2021), 483–491
  2. Sh. Artstein-Avidan, R. Karasev, Y. Ostrover, “From symplectic measurements to the Mahler conjecture”, Duke Math. J., 163:11 (2014), 2003–2022
  3. Sh. Artstein-Avidan, Y. Ostrover, “Bounds for Minkowski billiard trajectories in convex bodies”, Int. Math. Res. Not. IMRN, 2014:1 (2014), 165–193
  4. M. Berger, “Seules les quadriques admettent des caustiques”, Bull. Soc. Math. France, 123:1 (1995), 107–116
  5. А. А. Глуцюк, “О гамильтоновых проективных бильярдах на границах произведений выпуклых тел”, Труды МИАН, 327, Математические аспекты механики (2024), 44–62
  6. E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301
  7. P. Haim-Kislev, Y. Ostrover, A counterexample to Viterbo's conjecture
  8. Tianyu Ma, V. S. Matveev, I. Pavlyukevich, “Geodesic random walks, diffusion processes and Brownian motion on Finsler manifolds”, J. Geom. Anal., 31:12 (2021), 12446–12484
  9. V. S. Matveev, “Riemannian metrics having common geodesics with Berwald metrics”, Publ. Math. Debrecen, 74:3-4 (2009), 405–416
  10. V. S. Matveev, H.-B. Rademacher, M. Troyanov, A. Zeghib, “Finsler conformal Lichnerowicz–Obata conjecture”, Ann. Inst. Fourier (Grenoble), 59:3 (2009), 937–949
  11. V. S. Matveev, M. Troyanov, “Completeness and incompleteness of the Binet–Legendre metric”, Eur. J. Math., 1:3 (2015), 483–502
  12. V. S. Matveev, M. Troyanov, “The Binet–Legendre metric in Finsler geometry”, Geom. Topol., 16:4 (2012), 2135–2170
  13. V. S. Matveev, M. Troyanov, “The Myers–Steenrod theorem for Finsler manifolds of low regularity”, Proc. Amer. Math. Soc., 145:6 (2017), 2699–2712
  14. S. Tabachnikov, “Introducing projective billiards”, Ergodic Theory Dynam. Systems, 17:4 (1997), 957–976
  15. C. Viterbo, “Metric and isoperimetric problems in symplectic geometry”, J. Amer. Math. Soc., 13:2 (2000), 411–431

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Glutsyuk A.A., Matveev V.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).