On locally nilpotent derivations of polynomial algebra in three variables

Мұқаба
  • Авторлар: Dasgupta N.1, Gaifullin S.A.2,3,4
  • Мекемелер:
    1. MURTI Research Center, Gandhi Institute of Technology and Management, Bengaluru, Karnataka, India
    2. Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
    3. Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
    4. Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
  • Шығарылым: Том 216, № 4 (2025)
  • Беттер: 3-34
  • Бөлім: Articles
  • URL: https://journals.rcsi.science/0368-8666/article/view/306694
  • DOI: https://doi.org/10.4213/sm10094
  • ID: 306694

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper we investigate locally nilpotent derivations on the polynomial algebra in three variables over a field of characteristic zero. We introduce an iterating construction giving all locally nilpotent derivations of rank $2$. This construction allows us to obtain examples of non-triangularizable locally nilpotent derivations of rank $2$. We also show that the well-known example of a locally nilpotent derivation of rank $3$, given by Freudenburg, is a member of a large family of new examples of rank $3$ locally nilpotent derivations. Our approach is based on considering all locally nilpotent derivations commuting with a given derivation. We obtain a characterization of locally nilpotent derivations with a given rank in terms of sets of commuting locally nilpotent derivations. Bibliography: 32 titles.

Авторлар туралы

Nikhilesh Dasgupta

MURTI Research Center, Gandhi Institute of Technology and Management, Bengaluru, Karnataka, India

Хат алмасуға жауапты Автор.
Email: its.nikhilesh@gmail.com

Sergey Gaifullin

Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: sgayf@yandex.ru
Candidate of physico-mathematical sciences

Әдебиет тізімі

  1. И. В. Аржанцев, М. Г. Зайденберг, К. Г. Куюмжиян, “Многообразия флагов, торические многообразия и надстройки: три примера бесконечной транзитивности”, Матем. сб., 203:7 (2012), 3–30
  2. А. Ю. Перепечко, “Гибкость аффинных конусов над поверхностями дель Пеццо степени 4 и 5”, Функц. анализ и его прил., 47:4 (2013), 45–52
  3. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823
  4. M. A. Barkatou, H. El Houari, M. El Kahoui, “Triangulable locally nilpotent derivations in dimension three”, J. Pure Appl. Algebra, 212:9 (2008), 2129–2139
  5. H. Bass, “A non-triangular action of $mathbb G_a$ on $mathbb A^3$”, J. Pure Appl. Algebra, 33:1 (1984), 1–5
  6. S. M. Bhatwadekar, D. Daigle, “On finite generation of kernels of locally nilpotent $R$-derivations of $R[X,Y,Z]$”, J. Algebra, 322:9 (2009), 2915–2926
  7. S. M. Bhatwadekar, N. Gupta, S. A. Lokhande, “Some $K$-theoretic properties of the kernel of a locally nilpotent derivation on $k[X_1, …,X_4]$”, Trans. Amer. Math. Soc., 369:1 (2017), 341–363
  8. P. Bonnet, “Surjectivity of quotient maps for algebraic $(mathbb{C}, +)$-actions and polynomial maps with contractible fibers”, Tranform. Groups, 7:1 (2002), 3–14
  9. D. Daigle, “A necessary and sufficient condition for triangulability of derivations of $k[X,Y,Z]$”, J. Pure Appl. Algebra, 113:3 (1996), 297–305
  10. D. Daigle, “Classification of homogeneous locally nilpotent derivations of $k[X,Y,Z]$. I. Positive gradings of positive type”, Transform. Groups, 12:1 (2007), 33–47
  11. D. Daigle, “Triangular derivations of $mathbf{k}[X,Y,Z]$”, J. Pure Appl. Algebra, 214:7 (2010), 1173–1180
  12. D. Daigle, G. Freudenburg, “Locally nilpotent derivatons over a UFD and an application to rank two locally nilpotent derivations of $k[X_1,…,X_n]$”, J. Algebra, 204:2 (1998), 353–371
  13. D. Daigle, S. Kaliman, “A note on locally nilpotent derivations and variables of $k[X,Y,Z]$”, Canad. Math. Bull., 52:4 (2009), 535–543
  14. N. Dasgupta, N. Gupta, “An algebraic characterization of the affine three space”, J. Commut. Algebra, 13:3 (2021), 333–345
  15. S. A. Gaifullin, “Automorphisms of Danielewski varieties”, J. Algebra, 573 (2021), 364–392
  16. S. Gaifullin, A. Shafarevich, “Flexibility of normal affine horospherical varieties”, Proc. Amer. Math. Soc., 147:8 (2019), 3317–3330
  17. G. Freudenburg, “Triangulability criteria for additive group actions on affine space”, J. Pure Appl. Algebra, 105:3 (1995), 267–275
  18. G. Freudenburg, “Local slice constructions in $k[X,Y,Z]$”, Osaka J. Math, 34:4 (1997), 757–767
  19. G. Freudenburg, “Actions of $G_a$ on $mathbf A^3$ defined by homogeneous derivations”, J. Pure Appl. Algebra, 126:1-3 (1998), 169–181
  20. G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory Algebr. Transform. Groups, VII, 2nd ed., Springer-Verlag, Berlin, 2017, xxii+319 pp.
  21. H. W. E. Jung, “Über ganze birationale Transformationen der Ebene”, J. Reine Angew. Math., 1942:184 (1942), 161–174
  22. S. Kaliman, L. Makar-Limanov, “On the Russell–Koras contractible threefolds”, J. Algebraic Geom., 6:2 (1997), 247–268
  23. L. Makar-Limanov, “On the hypersurface $x + x^2y + z^2 + t^3 = 0$ in $mathbb{C}^4$ or a $mathbb{C}^3$-like threefold which is not $mathbb{C}^3$”, Israel J. Math., 96 (1996), 419–429
  24. L. Makar-Limanov, “On the group of automorphisms of a surface $x^ny = P(z)$”, Israel J. Math., 121 (2001), 113–123
  25. S. Maubach, “The commuting derivations conjecture”, J. Pure Appl. Algebra, 179:1-2 (2003), 159–168
  26. L. Moser-Jauslin, “Automorphism groups of Koras–Russell threefolds of the first kind”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 261–270
  27. M. Nagata, On automorphism group of $k[x,y]$, Lect. Math. Dep. Math. Kyoto Univ., 5, Kinokuniya Book Store Co., Ltd., Tokyo, 1972, v+53 pp.
  28. C. Petitjean, “Automorphism groups of Koras–Russell threefolds of the second kind”, Beitr. Algebra Geom., 57:3 (2016), 599–605
  29. V. L. Popov, “On actions of $mathbb{G}_a$ on $mathbb{A}^n$”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer-Verlag, Berlin, 1987, 237–242
  30. R. Rentschler, “Operations du groupe additif sur le plan affine”, C. R. Acad. Sci. Paris Ser. A-B, 267 (1968), A384–A387
  31. W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wisk. (3), 1 (1953), 33–41
  32. D. L. Wright, Algebras which resemble symmetric algebras, Ph.D. thesis, Columbian Univ., New York, 1975, 112 pp.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Dasgupta N., Gaifullin S.A., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).