Supersmooth tile $\mathrm B$-splines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A tile is a self-affine compact subset of $\mathbb R^n$ whose integer translates tile the space. A tile $\mathrm B$-spline is a self-convolution of the characteristic function of the tile, similarly to $\mathrm B$-splines, which are self-convolutions of the characteristic functions of closed intervals. It is known that tile $\mathrm B$-splines, even ones with ‘fractal’ support, can be ‘supersmooth’, that is, their smoothness can exceed that of classical $\mathrm B$-splines of the same order. We evaluate the smoothness of tile $\mathrm B$-splines in $W_2^k(\mathbb R^n)$ by applying a method developed recently and based on Littlewood–Paley type estimates for refinement equations. We adapt this method for tile $\mathrm B$-splines, thereby obtaining 20 families with the property of supersmoothness. We put forward the conjecture, supported by numerical experiments, that this classification is complete if the number of digits is small. Bibliography: 51 titles.

About the authors

Tatyana Ivanovna Zaitseva

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Author for correspondence.
Email: zaitsevatanja@gmail.com
without scientific degree, no status

References

  1. И. Добеши, Десять лекций по вейвлетам, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 464 с.
  2. В. С. Козякин, “Алгебраическая неразрешимость задачи об абсолютной устойчивости рассинхронизованных систем”, Автомат. и телемех., 1990, № 6, 41–47
  3. И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
  4. В. Ю. Протасов, “Обобщенный совместный спектральный радиус. Геометрический подход”, Изв. РАН. Сер. матем., 61:5 (1997), 99–136
  5. В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
  6. М. А. Скопина, Ю. А. Фарков, “Функции типа Уолша на $M$-положительных множествах в $mathbb{R}^d$”, Матем. заметки, 111:4 (2022), 631–635
  7. Т. И. Зайцева, “Многомерные тайловые $mathrm{B}$-сплайны”, Изв. РАН. Сер. матем., 87:2 (2023), 89–132
  8. Т. И. Зайцева, В. Ю. Протасов, “Самоподобные 2-аттракторы и тайлы”, Матем. сб., 213:6 (2022), 71–110
  9. S. G. Roux, M. Clausel, B. Vedel, S. Jaffard, P. Abry, “Self-similar anisotropic texture analysis: the hyperbolic wavelet transform contribution”, IEEE Trans. Image Process., 22:11 (2013), 4353–4363
  10. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164, no. 781, Amer. Math. Soc., Providence, RI, 2003, vi+122 pp.
  11. C. Bandt, G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593
  12. V. D. Blondel, S. Gaubert, J. N. Tsitsiklis, “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765
  13. V. D. Blondel, J. N. Tsitsiklis, “The boundedness of all products of a pair of matrices is undecidable”, Systems Control Lett., 41:2 (2000), 135–140
  14. C. Cabrelli, C. Heil, U. M. Molter, “Accuracy of lattice translates of several multidimensional refinable functions”, J. Approx. Theory, 95:1 (1998), 5–52
  15. A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
  16. M. Charina, “Vector multivariate subdivision schemes: comparison of spectral methods for their regularity analysis”, Appl. Comput. Harmon. Anal., 32:1 (2012), 86–108
  17. M. Charina, M. Donatelli, L. Romani, V. Turati, “Multigrid methods: grid transfer operators and subdivision schemes”, Linear Algebra Appl., 520 (2017), 151–190
  18. M. Charina, M. Donatelli, L. Romani, V. Turati, “Anisotropic bivariate subdivision with applications to multigrid”, Appl. Numer. Math., 135 (2019), 333–366
  19. M. Charina, Th. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291
  20. M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
  21. Di-Rong Chen, Rong-Qing Jia, S. D. Riemenschneider, “Convergence of vector subdivision schemes in Sobolev spaces”, Appl. Comput. Harmon. Anal., 12:1 (2002), 128–149
  22. A. Cohen, K. Gröchenig, L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255
  23. J.-P. Conze, A. Raugi, “Fonctions harmoniques pour un operateur de transition et applications”, Bull. Soc. Math. France, 118:3 (1990), 273–310
  24. G. Derfel, N. Dyn, D. Levin, “Generalized refinement equations and subdivision processes”, J. Approx. Theory, 80:2 (1995), 272–297
  25. G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68
  26. T. Eirola, “Sobolev characterization of solutions of dilation equations”, SIAM J. Math. Anal., 23:4 (1992), 1015–1030
  27. De-Jun Feng, N. Sidorov, “Growth rate for beta-expansions”, Monatsh. Math., 162:1 (2011), 41–60
  28. K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
  29. B. Han, “Computing the smoothness exponent of a symmetric multivariate refinable function”, SIAM J. Matrix Anal. Appl., 24:3 (2003), 693–714
  30. B. Han, “Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix”, Adv. Comput. Math., 24:1-4 (2006), 375–403
  31. D. Hacon, N. C. Saldanha, J. J. P. Veerman, “Remarks on self-affine tilings”, Exp. Math., 3:4 (1994), 317–327
  32. Rong-Qing Jia, “Characterization of smoothness of multivariate refinable functions in Sobolev spaces”, Trans. Amer. Math. Soc., 351:10 (1999), 4089–4112
  33. Qingtang Jiang, “Multivariate matrix refinable functions with arbitrary matrix dilation”, Trans. Amer. Math. Soc., 351:6 (1999), 2407–2438
  34. Rong-Qing Jia, Qingtang Jiang, “Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets”, SIAM J. Matrix Anal. Appl., 24:4 (2003), 1071–1109
  35. Rong-Qing Jia, Shurong Zhang, “Spectral properties of the transition operator associated to a multivariate refinement equation”, Linear Algebra Appl., 292:1-3 (1999), 155–178
  36. I. Kirat, Ka-Sing Lau, “Classification of integral expanding matrices and self-affine tiles”, Discrete Comput. Geom., 28:1 (2002), 49–73
  37. R. Kapica, J. Morawiec, “Refinement type equations and Grincevičjus series”, J. Math. Anal. Appl., 350:1 (2009), 393–400
  38. A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelet frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp.
  39. J. C. Lagarias, Yang Wang, “Integral self-affine tiles in $mathbb R^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102
  40. Ka-Sing Lau, Mang-Fai Ma, Jianrong Wang, “On some sharp regularity estimations of $L^2$-scaling functions”, SIAM J. Math. Anal., 27:3 (1996), 835–864
  41. D. Mekhontsev, IFStile software
  42. C. Möller, U. Reif, “A tree-based approach to joint spectral radius determination”, Linear Algebra Appl., 463 (2014), 154–170
  43. J. Peter, U. Reif, Subdivision surfaces, Geom. Comput., 3, Springer-Verlag, Berlin, 2008, xvi+204 pp.
  44. V. Yu. Protasov, “The Euler binary partition function and subdivision schemes”, Math. Comp., 86:305 (2017), 1499–1524
  45. A. Ron, Zuowei Shen, “The Sobolev regularity of refinable functions”, J. Approx. Theory, 106:2 (2000), 185–225
  46. J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232
  47. L. F. Villemoes, “Wavelet analysis of refinement equations”, SIAM J. Math. Anal., 25:5 (1994), 1433–1460
  48. L. F. Villemoes, “Energy moments in time and frequency for two-scale difference equation solutions and wavelets”, SIAM J. Math. Anal., 23:6 (1992), 1519–1543
  49. V. G. Zakharov, “Elliptic scaling functions as compactly supported multivariate analogs of the B-splines”, Int. J. Wavelets Multiresolut. Inf. Process., 12:2 (2014), 1450018, 23 pp.
  50. V. Yu. Protasov, T. Zaitseva, “Anisotropic refinable functions and the tile B-splines”, Appl. Comput. Harmon. Anal., 75 (2025), 101727, 20 pp.
  51. S. Zube, “Number systems, $alpha$-splines and refinement”, J. Comput. Appl. Math., 172:2 (2004), 207–231

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Zaitseva T.I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).