A criterion for the strong continuity of representations of topological groups in reflexive Frechet spaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We obtain some necessary and sufficient conditions for the strong continuity of representations of topological groups in reflexive Frechet spaces. In particular, we show that a representation $\pi$ of a topological group $G$ in a reflexive Frechet space is continuous in the strong operator topology if and only if for some number $q$, $0\le q<1$, and some neighbourhood $V$ of the identity element $e\in G$, for any neighbourhood $U$ of the zero element in $E$, its polar $\overset\circ{U}$ in the dual space $E^*$, any vector $\xi$ in $U$ and any element $f\in\overset\circ{U}$ the inequality $|f(\pi(g)\xi-\xi)|\le q$ holds for all $g\in V$. Bibliography: 26 titles.

About the authors

Alexander Isaakovich Shtern

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; Scientific Research Institute for System Studies of the Russian Academy of Science, Moscow, Russia

Author for correspondence.
Email: rroww@mail.ru

Candidate of physico-mathematical sciences, Associate professor

References

  1. С. Банах, Теория линейных операций, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 272 с.
  2. R. T. Moore, Measurable, continuous and smooth vectors for semi-groups and group representations, Mem. Amer. Math. Soc., 78, Amer. Math. Soc., Providence, RI, 1968, 80 pp.
  3. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972, iii+96 pp.
  4. S. A. Gaal, Linear analysis and representation theory, Springer-Verlag, New York–Heidelberg, 1973, ix+688 pp.
  5. C. C. Moore, “Group extensions and cohomology for locally compact groups. III”, Trans. Amer. Math. Soc., 221:1 (1976), 1–33
  6. Z. Sasvari, Positive definite and definitizable functions, Math. Top., 2, Akademie Verlag, Berlin, 1994, 208 pp.
  7. J. W. Baker, B. M. Lashkarizadeh-Bami, “Representations and positive definite functions on topological semigroups”, Glasg. Math. J., 38:1 (1996), 99–111
  8. K.-H. Neeb, “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300
  9. V. Pestov, “Review of “K.-H. Neeb, On a theorem of S. Banach, J. Lie Theory, 7:2, 1997, 293–300””, Math. Reviews, 98i:22003 (1998)
  10. K.-H. Neeb, D. Pickrell, “Supplements to the papers entitled: “On a theorem of S. Banach” and “The separable representations of $U(H)$””, J. Lie Theory, 10:1 (2000), 107–109
  11. R. Exel, M. Laca, “Continuous Fell bundles associated to measurable twisted actions”, Proc. Amer. Math. Soc., 125:3 (1997), 795–799
  12. B. E. Johnson, “Weak amenability of group algebras”, Bull. London Math. Soc., 23:3 (1991), 281–284
  13. Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 136 с.
  14. А. М. Вершик, “Счетные группы, близкие к конечным”, прил. к кн.: Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 112–135
  15. A. I. Shtern, “Almost convergence and its applications to the Fourier–Stieltjes localization”, Russ. J. Math. Phys., 1:1 (1993), 115–125
  16. A. I. Shtern, “Review of ‘F. Cabello Sanchez, Pseudo-characters and almost multiplicative functionals, J. Math. Anal. Appl., 248:1, 2000, 275–289’ ”, Math. Reviews, 2001i:22008 (2001)
  17. F. Cabello Sanchez, “Pseudo-characters and almost multiplicative functionals”, J. Math. Anal. Appl., 248:1 (2000), 275–289
  18. А. И. Штерн, “Критерии слабой и сильной непрерывности представлений топологических групп в банаховых пространствах”, Матем. сб., 193:9 (2002), 139–156
  19. Ю. И. Любич, Введение в теорию банаховых представлений групп, Вища школа, Харьков, 1985, 144 с.
  20. K. de Leeuw, I. Glicksberg, “The decomposition of certain group representations”, J. Anal. Math., 15 (1965), 135–192
  21. A. I. Shtern, “A condition for the strong continuity of representations of topological groups in reflexive Frechet spaces”, Russ. J. Math. Phys., 31:3 (2024), 571–573
  22. Х. Шефер, Топологические векторные пространства, Мир, М., 1971, 359 с.
  23. I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531
  24. E. Saab, “Dentabilite et points extremaux dans les espaces localement convexes”, Seminaire Choquet. Initiation à l'analyse, 13 (1973/74), Secretariat Math., Paris, 1975, Exp. No. 13, 9 pp.
  25. L. Egghe, “On the Radon–Nikodym-property, and related topics in locally convex spaces”, Vector space measures and applications. II (Univ. Dublin, Dublin, 1977), Lecture Notes in Math., 645, Springer-Verlag, Berlin–New York, 1978, 77–90
  26. А. И. Штерн, “Условие слабой непрерывности представлений топологических групп в пространствах Фреше”, УМН, 79:4(478) (2024), 179–180

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Shtern A.I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).