On jet closures of singularities
- Authors: Chen Y.1, Zuo H.1
-
Affiliations:
- Department of Mathematical Sciences, Tsinghua University, Beijing, P. R. China
- Issue: Vol 216, No 1 (2025)
- Pages: 109-143
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/306675
- DOI: https://doi.org/10.4213/sm10010
- ID: 306675
Cite item
Abstract
Jet closure and jet support closure were first introduced by de Fernex, Ein and Ishii to solve the local isomorphism problem. In this paper we introduce two local algebras associated to jet closure and jet support closure, respectively. We show that these two algebras are invariants of singularities. We compute and investigate these invariants for some interesting cases, such as the cases of monomial ideals and homogeneous ideals. For application, we can distinguish different simple curve singularities by a finite number of jet support closures, and this number is close to the Milnor number of the singularity. We also introduce a new filtration and a jet index for jet closures. The jet index describes which jet scheme recovers the information on the base scheme. Moreover, we obtain some properties of the jet index. Bibliography: 16 titles.
Keywords
About the authors
Yifan Chen
Department of Mathematical Sciences, Tsinghua University, Beijing, P. R. China
Author for correspondence.
Email: c-yf20@tsinghua.org.cn
Huaiqing Zuo
Department of Mathematical Sciences, Tsinghua University, Beijing, P. R. China
Email: hqzuo@mail.tsinghua.edu.cn
References
- В. И. Арнольд, А. Н. Варченко, С. М. Гусейн-Заде, Особенности дифференцируемых отображений, т. 1, Классификация критических точек, каустик и волновых фронтов, Наука, М., 1982, 304 с.
- A. H. Durfee, “Fifteen characterizations of rational double points and simple critical points”, Enseign. Math. (2), 25:1-2 (1979), 131–163
- T. de Fernex, L. Ein, S. Ishii, “Jet closures and the local isomorphism problem”, J. Algebra, 501 (2018), 166–181
- R. A. Goward, Jr., K. E. Smith, “The jet scheme of a monomial scheme”, Comm. Algebra, 34:5 (2006), 1591–1598
- D. Mallory, “Triviality of arc closures and the local isomorphism problem”, J. Algebra, 544 (2020), 47–61
- P. Vojta, “Jets via Hasse–Schmidt derivations”, Diophantine geometry, CRM Series, 4, Edizioni della Normale, Pisa, 2007, 335–361
- S. Ishii, “Jet schemes, arc spaces and the Nash problem”, C. R. Math. Acad. Sci. Soc. R. Can., 29:1 (2007), 1–21
- S. Ishii, “Mather discrepancy and the arc spaces”, Ann. Inst. Fourier (Grenoble), 63:1 (2013), 89–111
- S. Ishii, “Finite determination conjecture for Mather–Jacobian minimal log discrepancies and its applications”, Eur. J. Math., 4:4 (2018), 1433–1475
- S. Ishii, A. J. Reguera, “Singularities with the highest Mather minimal log discrepancy”, Math. Z., 275:3-4 (2013), 1255–1274
- S. Ishii, A. J. Reguera, “Singularities in arbitrary characteristic via jet schemes”, Hodge theory and $L^2$-analysis, Adv. Lect. Math. (ALM), 39, Int. Press, Somerville, MA, 2017, 419–449
- D. Rees, Lectures on the asymptotic theory of ideals, London Math. Soc. Lecture Note Ser., 113, Cambridge Univ. Press, Cambridge, 1988, x+202 pp.
- J. F. Nash, Jr., “Arc structure of singularities”, Duke Math. J., 81:1 (1995), 31–38
- J. Denef, F. Loeser, “Germs of arcs on singular algebraic varieties and motivic integration”, Invent. Math., 135:1 (1999), 201–232
- M. Mustaţǎ, “Singularities of pairs via jet schemes”, J. Amer. Math. Soc., 15:3 (2002), 599–615
- L. Ein, M. Mustaţǎ, “Jet schemes and singularities”, Algebraic geometry–Seattle 2005, Part 2, Proc. Sympos. Pure Math., 80, Part 2, Amer. Math. Soc., Providence, RI, 2009, 505–546
Supplementary files
