Slim exceptional sets of Waring–Goldbach problem: two squares, two cubes and two biquadrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $N$ be a sufficiently large number. We show that, with at most $O(N^{3/32+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$, where $p_1, p_2, …, p_6$ are prime numbers. This is an improvement of the result $O(N^{7/18+\varepsilon})$ due to Zhang and Li.Bibliography: 13 titles.

About the authors

Shuangrui Tian

Department of Mathematics, Tongji University, Shanghai, P. R. China

Author for correspondence.
Email: tianshuangrui@tongji.edu.cn
PhD, no status

References

  1. J. Brüdern, “Sums of squares and higher powers. I”, J. Lond. Math. Soc. (2), 35:2 (1987), 233–243
  2. K. Kawada, T. D. Wooley, “Relations between exceptional sets for additive problems”, J. Lond. Math. Soc. (2), 82:2 (2010), 437–458
  3. A. V. Kumchev, “On Weyl sums over primes and almost primes”, Michigan Math. J., 54:2 (2006), 243–268
  4. Yuhui Liu, “On a Waring–Goldbach problem involving squares, cubes and biquadrates”, Bull. Korean Math. Soc., 55:6 (2018), 1659–1666
  5. Xiao Dong Lü, “Waring–Goldbach problem: two squares, two cubes and two biquadrates”, Chinese Ann. Math. Ser. A, 36:2 (2015), 161–174 (in Chinese)
  6. Reviews in number theory, Reviews reprinted in Mathematical reviews, 1940 through 1972, volumes 1–44 inclusive, v. 1–6, ed. W. J. Leveque, Amer. Math. Soc., Providence, RI, 1974, v+420 pp., v+672 pp., vi+377 pp., vi+582 pp., v+470 pp., ix+410 pp.
  7. R. C. Vaughan, On the representation of numbers as sums of squares, cubes and fourth powers and on the representation of numbers as sums of powers of primes, Ph.D. thesis, Univ. London, 1970
  8. Р. Вон, Метод Харди–Литтлвуда, Мир, М., 1985, 184 с.
  9. T. D. Wooley, “Slim exceptional sets for sums of four squares”, Proc. Lond. Math. Soc. (3), 85:1 (2002), 1–21
  10. Min Zhang, Jinjiang Li, “Exceptional set for sums of unlike powers of primes”, Taiwanese J. Math., 22:4 (2018), 779–811
  11. Min Zhang, Jinjiang Li, “Exceptional set for sums of unlike powers of primes (II)”, Ramanujan J., 55:1 (2021), 131–140
  12. Lilu Zhao, “On the Waring–Goldbach problem for fourth and sixth powers”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1593–1622
  13. Li Zhu, “Goldbach–Linnik type problems with unequal powers of primes”, J. Korean Math. Soc., 59:2 (2022), 407–420

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tian S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).