Prime avoiding numbers is a basis of order 2
- Authors: Gabdullin M.R.1,2, Radomskii A.O.3
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- University of Illinois at Urbana-Champaign
- National Research University Higher School of Economics
- Issue: Vol 215, No 5 (2024)
- Pages: 47-70
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/255924
- DOI: https://doi.org/10.4213/sm9980
- ID: 255924
Cite item
Abstract
Keywords
About the authors
Mikhail Rashidovich Gabdullin
Steklov Mathematical Institute of Russian Academy of Sciences; University of Illinois at Urbana-Champaign
Email: gabdullin@mi-ras.ru
Scopus Author ID: 57190070116
Candidate of physico-mathematical sciences
Artyom Olegovich Radomskii
National Research University Higher School of Economics
Email: artyom.radomskii@mail.ru
ORCID iD: 0000-0002-2675-2134
Scopus Author ID: 37116185600
ResearcherId: Q-4513-2016
Candidate of physico-mathematical sciences, Researcher
References
- R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., 13:4 (1938), 242–247
- E. Westzynthius, “Über die Verteilung der Zahlen, die zu den $n$ ersten Primzahlen teilerfremd sind”, Comment. Phys.-Math. Soc. Sci. Fenn., 5:25 (1931), 1–37
- P. Erdős, “On the difference of consecutive primes”, Quart. J. Math. Oxford Ser., 6 (1935), 124–128
- J. Pintz, “Very large gaps between consecutive primes”, J. Number Theory, 63:2 (1997), 286–301
- K. Ford. B. Green, S. Konyagin, T. Tao, “Large gaps between consecutive prime numbers”, Ann. of Math. (2), 183:3 (2016), 935–974
- J. Maynard, “Large gaps between primes”, Ann. of Math. (2), 183:3 (2016), 915–933
- P. Erdős, “Some of my favourite unsolved problems”, A tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, 467–478
- K. Ford, B. Green, S. Konyagin, J. Maynard, T. Tao, “Long gaps between primes”, J. Amer. Math. Soc., 31:1 (2018), 65–105
- H. Cramer, “On the order of magnitude of the difference between consecutive prime numbers”, Acta Arith., 2 (1936), 23–46
- A. Granville, “Harald Cramer and the distribution of prime numbers”, Scand. Actuar. J., 1995:1 (1995), 12–28
- W. Banks, K. Ford, T. Tao, “Large prime gaps and probabilistic models”, Invent. Math., 233:3 (2023), 1471–1518
- R. C. Baker, G. Harman, J. Pintz, “The difference between consecutive primes. II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562
- K. Ford, D. R. Heath-Brown, S. Konyagin, “Large gaps between consecutive prime numbers containing perfect powers”, Analytic number theory, Springer, Cham, 2015, 83–92
- H. Maier, M. Th. Rassias, “Large gaps between consecutive prime numbers containing perfect $k$-th powers of prime numbers”, J. Funct. Anal., 272:6 (2017), 2659–2696
- H. Maier, M. Th. Rassias, “Prime avoidance property of $k$-th powers of prime numbers with Beatty sequence”, Discrete mathematics and applications, Springer Optim. Appl., 165, Springer, Cham, 2020, 397–404
- K. Ford, S. Konyagin, J. Maynard, C. B. Pomerance, T. Tao, “Long gaps in sieved sets”, J. Eur. Math. Soc. (JEMS), 23:2 (2021), 667–700
- K. Ford, S. Konyagin, J. Maynard, C. B. Pomerance, T. Tao, “Corrigendum: Long gaps in sieved sets”, J. Eur. Math. Soc. (JEMS), 25:6 (2023), 2483–2485
Supplementary files
