Localization of window functions of dual and tight gabor frames generated by the Gaussian function

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gabor frames generated by the Gaussian function are considered. The localization of the window functions of dual frames is estimated in terms of the uncertainty constants, it its dependence on the relation between the parameters of the time-frequency window and the degree of overcompleteness. It is shown that localization worsens rapidly with the increasing disproportion in the parameters of the window. On the other hand, the higher the system of functions forming the frame is overdetermined, the better the window function of the dual frame is localized. For a tight frame the localization of the window function with the same set of parameters is much better than that for the dual frame. This problem is closely related to the problem of interpolation by we have uniform shifts of the Gaussian function. Both the nodal interpolation function and the window function of the dual frame are constructed from the same coefficients. These coefficients play an important role also in the derivation of formulae for the uncertainty constants. This is why their properties related to sign alternation and the monotonicity of decrease of the absolute value are considered in the paper.

About the authors

Evgenii Aleksandrovich Kiselev

Voronezh State University

Email: evg-kisel2006@yandex.ru
Candidate of physico-mathematical sciences, no status

Leonid Arkad'evich Minin

Voronezh State University

Email: mininla@mail.ru

Igor Yakovlevich Novikov

Voronezh State University

Author for correspondence.
Email: evg-kisel2006@yandex.ru

Doctor of physico-mathematical sciences, Professor

Sergei Nikolaevich Ushakov

Voronezh State University

Email: ushakowww@ya.ru

References

  1. И. фон Нейман, Математические основы квантовой механики, Наука, М., 1964, 367 с.
  2. А. М. Переломов, “Замечание о полноте системы когерентных состояний”, ТМФ, 6:2 (1971), 213–224
  3. V. Bargmann, P. Butera, L. Girardello, J. R. Klauder, “On the completeness of the coherent states”, Rep. Math. Phys., 2:4 (1971), 221–228
  4. H. Bacry, A. Grossmann, J. Zak, “Geometry of generalized coherent states”, Group theoretical methods in physics (Nijmegen, 1975), Lecture Notes in Phys., 50, Springer-Verlag, Berlin–New York, 1976, 249–268
  5. D. Gabor, “Theory of communication. Part 1. The analysis of information”, J. Inst. Elec. Engrs. Part III, 93:26 (1946), 429–441
  6. R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. (2), 131:6 (1963), 2766–2788
  7. И. Добеши, Десять лекций по вейвлетам, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 464 с.
  8. I. Daubechies, A. Grossmann, “Frames in the Bargmann space of entire functions”, Comm. Pure Appl. Math., 41:2 (1988), 151–164
  9. Yu. I. Lyubarskii, “Frames in the Bargmann space of entire functions”, Entire and subharmonic functions, Adv. Soviet Math., 11, Amer. Math. Soc., Providence, RI, 1992, 167–180
  10. I. Daubechies, H. J. Landau, Z. Landau, “Gabor time-frequency lattices and the Wexler–Raz identity”, J. Fourier Anal. Appl., 1:4 (1995), 437–478
  11. J. Wexler, S. Raz, “Discrete Gabor expansions”, Signal Process., 21:3 (1990), 207–220
  12. H. G. Feichtinger, A. Grybos, D. M. Onchis, “Approximate dual Gabor atoms via the adjoint lattice method”, Adv. Comput. Math., 40:3 (2014), 651–665
  13. H. G. Feichtinger, F. Luef, T. Werther, “A guided tour from linear algebra to the foundations of Gabor analysis”, Gabor and wavelet frames, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 10, World Sci. Publ., Hackensack, NJ, 2007, 1–49
  14. O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd ed., Birkhäuser/Springer, Cham, 2016, xxv+704 pp.
  15. A. J. E. M. Janssen, “Duality and biorthogonality for Weyl–Heisenberg frames”, J. Fourier Anal. Appl., 1:4 (1995), 403–436
  16. A. J. E. M. Janssen, “Some Weyl–Heisenberg frame bound calculations”, Indag. Math. (N.S.), 7:2 (1996), 165–183
  17. A. J. E. M. Janssen, T. Strohmer, “Characterization and computation of canonical tight windows for Gabor frames”, J. Fourier Anal. Appl., 8:1 (2002), 1–28
  18. A. J. E. M. Janssen, “On generating tight Gabor frames at critical density”, J. Fourier Anal. Appl., 9:2 (2003), 175–214
  19. K. Gröchenig, Foundations of time-frequency analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2001, xvi+359 pp.
  20. Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algèbres d'operateurs”, Seminaire Bourbaki, v. 1985/1986, Asterisque, 145-146, Soc. Math. France, Paris, 1987, Exp. No. 662, 209–223
  21. J. Bourgain, “A remark on the uncertainty principle for Hilbertian basis”, J. Funct. Anal., 79:1 (1988), 136–143
  22. И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
  23. Е. А. Лебедева, “Минимизация константы неопределенности семейства всплесков Мейера”, Матем. заметки, 81:4 (2007), 553–560
  24. Е. А. Лебедева, В. Ю. Протасов, “Всплески Мейера с наименьшей константой неопределенности”, Матем. заметки, 84:5 (2008), 732–740
  25. H. Bölcskei, “A necessary and sufficient condition for dual Weyl–Heisenberg frames to be compactly supported”, J. Fourier Anal. Appl., 5:5 (1999), 409–419
  26. H. Bölcskei, J. E. M. Janssen, “Gabor frames, unimodularity, and window decay”, J. Fourier Anal. Appl., 6:3 (2000), 255–276
  27. T. Strohmer, “Approximation of dual Gabor frames, window decay, and wireless communications”, Appl. Comput. Harmon. Anal., 11:2 (2001), 243–262
  28. T. Strohmer, S. Beaver, “Optimal OFDM design for time-frequency dispersive channels”, IEEE Trans. Commun., 51:7 (2003), 1111–1122
  29. V. Maz'ya, G. Schmidt, “On approximate approximations using Gaussian kernels”, IMA J. Numer. Anal., 16:1 (1996), 13–29
  30. V. Maz'ya, G. Schmidt, Approximate approximations, Math. Surveys Monogr., 141, Amer. Math. Soc., Providence, RI, 2007, xiv+349 pp.
  31. Л. А. Минин, И. Я. Новиков, С. Н. Ушаков, “О разложении по фреймам Габора, порожденным функцией Гаусса”, Матем. заметки, 100:6 (2016), 951–953
  32. Е. А. Киселев, Л. А. Минин, И. Я. Новиков, “Вычисление констант Рисса и ортогонализация для неполных систем когерентных состояний с помощью тета-функций”, Матем. сб., 207:8 (2016), 101–116
  33. Ч. Чуи, Введение в вейвлеты, Мир, М., 2001, 412 с.
  34. Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, т. 2, 2-е изд., Физматгиз, М., 1963, 516 с.
  35. М. В. Журавлев, Е. А. Киселев, Л. А. Минин, С. М. Ситник, “Тета-функции Якоби и системы целочисленных сдвигов функций Гаусса”, Совр. матем. и ее приложения, 67, 2010, 107–116
  36. Н. К. Бари, Тригонометрические ряды, Физматгиз, М., 1961, 936 с.
  37. H. G. Feichtinger, G. Zimmermann, “A Banach space of test functions for Gabor analysis”, Gabor analysis and algorithms. Theory and applications, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 1998, 123–170
  38. Е. А. Киселев, Л. А. Минин, И. Я. Новиков, “Предельные свойства систем целочисленных сдвигов и функций, порождающих жесткие фреймы Габора”, Матем. заметки, 106:1 (2019), 62–73

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Киселев Е.A., Минин Л.A., Новиков И.Y., Ушаков С.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).