Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is devoted to holomorphic vector bundles with logarithmic connections on a compact Riemann surface and the applications of the results obtained to the question of solvability of the Riemann–Hilbert problem on a Riemann surface. We give an example of a representation of the fundamental group of a Riemann surface with four punctured points which cannot be realized as the monodromy representation of a logarithmic connection with four singular points on a semistable bundle. For an arbitrary pair of a bundle and a logarithmic connection on it we prove an estimate for the slopes of the associated Harder–Narasimhan filtration quotients. In addition, we present results on the realizability of a representation as a direct summand in the monodromy representation of a logarithmic connection on a semistable bundle of degree zero.

About the authors

Il'ya Vladimirovich Vyugin

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); Department of Mathematics, National Research University "Higher School of Economics"

Author for correspondence.
Email: vyugin@gmail.com
Candidate of physico-mathematical sciences, no status

Lada Andreevna Dudnikova

HSE University

Email: ladudnikova@edu.hse.ru
without scientific degree, no status

References

  1. А. A. Болибрух, Фуксовы дифференциальные уравнения и голоморфные расслоения, МЦНМО, М., 2000, 127 с.
  2. А. А. Болибрух, “Проблема Римана–Гильберта на компактной римановой поверхности”, Монодромия в задачах алгебраической геометрии и дифференциальных уравнений, Сборник статей, Труды МИАН, 238, Наука, МАИК «Наука/Интерпериодика», М., 2002, 55–69
  3. H. Esnault, E. Viehweg, “Logarithmic de Rham complexes and vanishing theorems”, Invent. Math., 86:1 (1986), 161–194
  4. G. Harder, M. S. Narasimhan, “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann., 212 (1975), 215–248
  5. А. А. Болибрух, “21-я проблема Гильберта для линейных фуксовых систем”, Труды МИАН, 206, Наука, М., 1994, 3–158
  6. И. В. Вьюгин, Р. Р. Гонцов, “О дополнительных параметрах в обратных задачах монодромии”, Матем. сб., 197:12 (2006), 43–64
  7. M. S. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567
  8. И. В. Вьюгин, “Фуксовы системы с вполне приводимой монодромией”, Матем. заметки, 85:6 (2009), 817–825
  9. И. В. Вьюгин, “Неразложимая фуксова система с разложимым представлением монодромии”, Матем. заметки, 80:4 (2006), 501–508

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Вьюгин И.V., Дудникова Л.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».