Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface
- Authors: Vyugin I.V.1,2, Dudnikova L.A.3
-
Affiliations:
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Department of Mathematics, National Research University "Higher School of Economics"
- HSE University
- Issue: Vol 215, No 2 (2024)
- Pages: 3-20
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/251793
- DOI: https://doi.org/10.4213/sm9781
- ID: 251793
Cite item
Abstract
The paper is devoted to holomorphic vector bundles with logarithmic connections on a compact Riemann surface and the applications of the results obtained to the question of solvability of the Riemann–Hilbert problem on a Riemann surface. We give an example of a representation of the fundamental group of a Riemann surface with four punctured points which cannot be realized as the monodromy representation of a logarithmic connection with four singular points on a semistable bundle. For an arbitrary pair of a bundle and a logarithmic connection on it we prove an estimate for the slopes of the associated Harder–Narasimhan filtration quotients. In addition, we present results on the realizability of a representation as a direct summand in the monodromy representation of a logarithmic connection on a semistable bundle of degree zero.
About the authors
Il'ya Vladimirovich Vyugin
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); Department of Mathematics, National Research University "Higher School of Economics"
Author for correspondence.
Email: vyugin@gmail.com
Candidate of physico-mathematical sciences, no status
Lada Andreevna Dudnikova
HSE University
Email: ladudnikova@edu.hse.ru
without scientific degree, no status
References
- А. A. Болибрух, Фуксовы дифференциальные уравнения и голоморфные расслоения, МЦНМО, М., 2000, 127 с.
- А. А. Болибрух, “Проблема Римана–Гильберта на компактной римановой поверхности”, Монодромия в задачах алгебраической геометрии и дифференциальных уравнений, Сборник статей, Труды МИАН, 238, Наука, МАИК «Наука/Интерпериодика», М., 2002, 55–69
- H. Esnault, E. Viehweg, “Logarithmic de Rham complexes and vanishing theorems”, Invent. Math., 86:1 (1986), 161–194
- G. Harder, M. S. Narasimhan, “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann., 212 (1975), 215–248
- А. А. Болибрух, “21-я проблема Гильберта для линейных фуксовых систем”, Труды МИАН, 206, Наука, М., 1994, 3–158
- И. В. Вьюгин, Р. Р. Гонцов, “О дополнительных параметрах в обратных задачах монодромии”, Матем. сб., 197:12 (2006), 43–64
- M. S. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567
- И. В. Вьюгин, “Фуксовы системы с вполне приводимой монодромией”, Матем. заметки, 85:6 (2009), 817–825
- И. В. Вьюгин, “Неразложимая фуксова система с разложимым представлением монодромии”, Матем. заметки, 80:4 (2006), 501–508
Supplementary files
