Infinite elliptic hypergeometric series: convergence and diffrence equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We derive finite difference equations of infinite order for theta-hypergeometric series and investigate the space of their solutions. In general, such infinite series diverge, and we describe some constraints on the parameters when they do converge. In particular, we lift the Hardy-Littlewood criterion of the convergence of q-hypergeometric series for |q|=1qn1, to the elliptic level and prove the convergence of infinite very-well poised elliptic hypergeometric r+1Vr-series for restricted values of q.

About the authors

Danil Igorevich Krotkov

HSE University

Email: math-net2025_06@mi-ras.ru

Vyacheslav Pavlovich Spiridonov

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics; HSE University

Author for correspondence.
Email: math-net2025_06@mi-ras.ru

Doctor of physico-mathematical sciences, no status

References

  1. Р. Аски, Р. Рой, Дж. Эндрюс, Специальные функции, МЦНМО, М., 2013, 651 с.
  2. I. B. Frenkel, V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand mathematical seminars, Birkhäuser Boston, Inc., Boston, MA, 1997, 171–204
  3. Дж. Гаспер, М. Рахман, Базисные гипергеометрические ряды, Мир, М., 1993, 349 с.
  4. S. Grepstad, L. Kaltenböck, M. Neumüller, “A positive lower bound for $lim inf_{Ntoinfty}prod_{r=1}^{N} |2sin pi rvarphi|$”, Proc. Amer. Math. Soc., 147:11 (2019), 4863–4876
  5. G. H. Hardy, J. E. Littlewood, “Notes on the theory of series (XXIV): a curious power-series”, Proc. Cambridge Philos. Soc., 42:2 (1946), 85–90
  6. D. S. Lubinsky, “The size of $(q; q)_n$ for $q$ on the unit circle”, J. Number Theory, 76:2 (1999), 217–247
  7. G. Petruska, “On the radius of convergence of $q$-series”, Indag. Math. (N.S.), 3:3 (1992), 353–364
  8. V. P. Spiridonov, “Theta hypergeometric series”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 307–327
  9. V. P. Spiridonov, “An elliptic incarnation of the Bailey chain”, Int. Math. Res. Not. IMRN, 2002:37 (2002), 1945–1977
  10. V. P. Spiridonov, “Theta hypergeometric integrals”, Алгебра и анализ, 15:6 (2003), 161–215
  11. В. П. Спиридонов, “Очерки теории эллиптических гипергеометрических функций”, УМН, 63:3(381) (2008), 3–72
  12. A. Zhedanov, “Elliptic polynomials orthogonal on the unit circle with a dense point spectrum”, Ramanujan J., 19:3 (2009), 351–384
  13. A. Zhedanov, “Umbral “classical” polynomials”, J. Math. Anal. Appl., 420:2 (2014), 1354–1375

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Кротков Д.I., Спиридонов В.P.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).