Convergence of a sandpile model on a triangular lattice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present a survey of results on convergence in sandpile models. For a sandpile model on a triangular lattice we prove results similar to the ones known for a square lattice. Namely, consider the sandpile model on the integer points of the plane and put n grains of sand at the origin. Let us begin the process of relaxation: if the number of grains of sand at some vertex z is not less than its valency (in this case we say that the vertex z is unstable), then we move a grain of sand from z to each adjacent vertex, and then repeat this operation as long as there are unstable vertices. We prove that the support of the state (nδ0) in which the process stabilizes grows at a rate of n and, after rescaling with coefficient n(nδ0) has a limit in the weak- topology.
This result was established by Pegden and Smart for the square lattice (where every vertex is connected with four nearest neighbours); we extend it to a triangular lattice (where every vertex is connected with six neighbours).

About the authors

Arkadiy Artemovich Aliev

Saint-Petersburg State University, Department of Mathematics and Computer Science

Author for correspondence.
Email: nikaanspb@gmail.com

Nikita Sergeevich Kalinin

Guangdong Technion Israel Institute of Technology

Email: nikaanspb@gmail.com

References

  1. W. Pegden, Sandpile gallery
  2. D. Dhar, “Theoretical studies of self-organized criticality”, Phys. A, 369:1 (2006), 29–70
  3. S. Corry, D. Perkinson, Divisors and sandpiles. An introduction to chip-firing, AMS Non-Ser. Monogr., 114, Amer. Math. Soc., Providence, RI, 2018, xiv+325 pp.
  4. W. Pegden, C. K. Smart, “Convergence of the Abelian sandpile”, Duke Math. J., 162:4 (2013), 627–642
  5. H. Aleksanyan, H. Shahgholian, “Discrete balayage and boundary sandpile”, J. Anal. Math., 138:1 (2019), 361–403
  6. D. Dhar, P. Ruelle, S. Sen, D.-N. Verma, “Algebraic aspects of Abelian sandpile models”, J. Phys. A, 28:4 (1995), 805–831
  7. N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45
  8. R. Bacher, P. de la Harpe, T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. France, 125:2 (1997), 167–198
  9. А. Д. Медных, И. А. Медных, “Циклические накрытия графов. Перечисление отмеченных остовных лесов и деревьев, индекс Кирхгофа и якобианы”, УМН, 78:3(471) (2023), 115–164
  10. M. Lang, M. Shkolnikov, “Harmonic dynamics of the abelian sandpile”, Proc. Natl. Acad. Sci. USA, 116:8 (2019), 2821–2830
  11. M. Lang, M. Shkolnikov, Sandpile monomorphisms and harmonic functions
  12. K. Schmidt, E. Verbitskiy, “Abelian sandpiles and the harmonic model”, Comm. Math. Phys., 292:3 (2009), 721–759
  13. N. Kalinin, V. Khramov, Sandpile group of infinite graphs
  14. A. A. Jarai, “Thermodynamic limit of the abelian sandpile model on $Z^d$”, Markov Process. Related Fields, 11:2 (2005), 313–336
  15. S. R. Athreya, A. A. Jarai, “Infinite volume limit for the stationary distribution of abelian sandpile models”, Comm. Math. Phys., 249:1 (2004), 197–213
  16. A. Fey, L. Levine, Y. Peres, “Growth rates and explosions in sandpiles”, J. Stat. Phys., 138:1-3 (2010), 143–159
  17. Y. Le Borgne, D. Rossin, “On the identity of the sandpile group”, Discrete Math., 256:3 (2002), 775–790
  18. L. Levine, Y. Peres, “Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile”, Potential Anal., 30:1 (2009), 1–27
  19. L. Levine, W. Pegden, C. K. Smart, “Apollonian structure in the Abelian sandpile”, Geom. Funct. Anal., 26:1 (2016), 306–336
  20. L. Levine, W. Pegden, C. K. Smart, “The Apollonian structure of integer superharmonic matrices”, Ann. of Math. (2), 186:1 (2017), 1–67
  21. A. Melchionna, “The sandpile identity element on an ellipse”, Discrete Contin. Dyn. Syst., 42:8 (2022), 3709–3732
  22. W. Pegden, C. K. Smart, “Stability of patterns in the Abelian sandpile”, Ann. Henri Poincare, 21:4 (2020), 1383–1399
  23. W. Pegden, Sandpiles!
  24. A. Bou-Rabee, Integer superharmonic matrices on the $F$-lattice
  25. M. Kapovich, A. Kontorovich, “On superintegral Kleinian sphere packings, bugs, and arithmetic groups”, J. Reine Angew. Math., 2023:798 (2023), 105–142
  26. A. Bou-Rabee, “Dynamic dimensional reduction in the Abelian sandpile”, Comm. Math. Phys., 390:2 (2022), 933–958
  27. N. Kalinin, M. Shkolnikov, “Tropical curves in sandpiles”, C. R. Math. Acad. Sci. Paris, 354:2 (2016), 125–130
  28. N. Kalinin, M. Shkolnikov, “Introduction to tropical series and wave dynamic on them”, Discrete Contin. Dyn. Syst., 38:6 (2018), 2827–2849
  29. N. Kalinin, M. Shkolnikov, “Sandpile solitons via smoothing of superharmonic functions”, Comm. Math. Phys., 378:3 (2020), 1649–1675
  30. N. Kalinin, M. Shkolnikov, Tropical curves in sandpile models
  31. N. Kalinin, “Pattern formation and tropical geometry”, Front. Phys., 8 (2020), 581126, 10 pp.
  32. N. Kalinin, “Sandpile solitons in higher dimensions”, Arnold Math. J., 9:3 (2023), 435–454
  33. N. Kalinin, Shrinking dynamic on multidimensional tropical series
  34. T. Horiguchi, “Lattice Green's functions for the triangular and honeycomb lattices”, J. Math. Phys., 13:9 (1972), 1411–1419
  35. N. Azimi-Tafreshi, H. Dashti-Naserabadi, S. Moghimi-Araghi, P. Ruelle, “The Abelian sandpile model on the honeycomb lattice”, J. Stat. Mech. Theory Exp., 2010:02 (2010), P02004, 24 pp.
  36. A. Poncelet, P. Ruelle, “Sandpile probabilities on triangular and hexagonal lattices”, J. Phys. A, 51:1 (2018), 015002, 25 pp.
  37. L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xxii+749 pp.
  38. L. A. Caffarelli, X. Cabre, Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995, vi+104 pp.
  39. L. Levine, Y. Peres, “Scaling limits for internal aggregation models with multiple sources”, J. Anal. Math., 111:1 (2010), 151–219

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Алиев А.A., Калинин Н.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).