The foundations of $(2n,k)$-manifolds
- 作者: Buchstaber V.M.1, Terzić S.2
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- University of Montenegro
- 期: 卷 210, 编号 4 (2019)
- 页面: 41-86
- 栏目: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/142385
- DOI: https://doi.org/10.4213/sm9106
- ID: 142385
如何引用文章
详细
作者简介
Victor Buchstaber
Steklov Mathematical Institute of Russian Academy of Sciences
Email: buchstab@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Svjetlana Terzić
University of Montenegro
Email: sterzic@rc.pmf.cg.ac.yu
Candidate of physico-mathematical sciences
参考
- M. F. Atiyah, “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15
- A. Ayzenberg, Torus action of complexity one and their local properties
- Г. Бредон, Введение в теорию компактных групп преобразований, Наука, М., 1980, 440 с.
- V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002, viii+144 pp.
- V. M. Buchstaber, S. Terzic, “$(2n, k)$-manifolds and applications”, in Report No. 27/2014 ‘Okounkov bodies and applications’, Oberwolfach Rep., 11:2 (2014), 1469–1472
- V. M. Buchstaber, S. Terzic, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $CP^{5}$”, Mosc. Math. J., 16:2 (2016), 237–273
- V. M. Buchstaber, S. Terzic, Toric topology of the compex Grassmann manifolds
- M. Erne, “The ABC of order and topology”, Category theory at work (Bremen, 1990), Res. Exp. Math., 18, Heldermann, Berlin, 1991, 57–83
- M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451
- V. Guillemin, V. Sternberg, “Convexity properties of the moment mapping”, Invent. Math., 67:3 (1982), 491–513
- L. M. Feher, A. Nemethi, R. Rimanyi, “Equivariant classes of matrix matroid varieties”, Comment. Math. Helv., 87:4 (2012), 861–889
- N. Ford, “The expected codimension of a matroid variety”, J. Algebr. Combin., 41:1 (2015), 29–47
- I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. in Math., 44:3 (1982), 279–312
- И. М. Гельфанд, В. В. Серганова, “Комбинаторные геометрии и страты тора на однородных многообразиях”, УМН, 42:2(254) (1987), 107–134
- I. M. Gelfand, R. M. Goresky, R. D. MacPherson, V. V. Serganova, “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. in Math., 63:3 (1987), 301–316
- M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110
- M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $overline{M}_{0,n}$”, J. Algebraic Geom., 2:2 (1993), 239–262
- Y. Karshon, S. Tolman, “Classification of Hamiltonian torus actions with two-dimensional quotients”, Geom. Topol., 18:2 (2014), 669–716
- E. Katz, “Matroid theory for algebraic geometers”, Nonarchimedean and tropical geometry, Simons Symp., Springer, Cham, 2016, 435–517
- S. Keel, J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311
- F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, 31, Princeton Univ. Press, Princeton, NJ, 1984, i+211 pp.
- D. Timashev, “Torus actions of complexity one”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 349–364
- Г. M. Циглер, Теория многогранников, МЦНМО, М., 2014, 568 с.
补充文件
