The foundations of $(2n,k)$-manifolds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The focus of our paper is a system of axioms that serves as a basis for introducing structural data for $(2n,k)$-manifolds $M^{2n}$, where $M^{2n}$ is a smooth, compact $2n$-dimensional manifold with a smooth effective action of the $k$-dimensional torus $T^k$. In terms of these data a construction of a model space $\mathfrak E$ with an action of the torus $T^k$ is given such that there exists a $T^k$-equivariant homeomorphism $\mathfrak E\to M^{2n}$. This homeomorphism induces a homeomorphism $\mathfrak E/T^k\to M^{2n}/T^k$. The number $d=n-k$ is called the complexity of a $(2n,k)$-manifold. Our theory comprises toric geometry and toric topology, where $d=0$. It is shown that the class of homogeneous spaces $G/H$ of compact Lie groups, where $\operatorname{rk}G=\operatorname{rk}H$, contains $(2n,k)$-manifolds that have nonzero complexity. The results are demonstrated on the complex Grassmann manifolds $G_{k+1,q}$ with an effective action of the torus $T^k$. Bibliography: 23 titles.

About the authors

Victor Matveevich Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences

Email: buchstab@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Svjetlana Terzić

University of Montenegro

Email: sterzic@rc.pmf.cg.ac.yu
Candidate of physico-mathematical sciences

References

  1. M. F. Atiyah, “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15
  2. A. Ayzenberg, Torus action of complexity one and their local properties
  3. Г. Бредон, Введение в теорию компактных групп преобразований, Наука, М., 1980, 440 с.
  4. V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002, viii+144 pp.
  5. V. M. Buchstaber, S. Terzic, “$(2n, k)$-manifolds and applications”, in Report No. 27/2014 ‘Okounkov bodies and applications’, Oberwolfach Rep., 11:2 (2014), 1469–1472
  6. V. M. Buchstaber, S. Terzic, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $CP^{5}$”, Mosc. Math. J., 16:2 (2016), 237–273
  7. V. M. Buchstaber, S. Terzic, Toric topology of the compex Grassmann manifolds
  8. M. Erne, “The ABC of order and topology”, Category theory at work (Bremen, 1990), Res. Exp. Math., 18, Heldermann, Berlin, 1991, 57–83
  9. M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451
  10. V. Guillemin, V. Sternberg, “Convexity properties of the moment mapping”, Invent. Math., 67:3 (1982), 491–513
  11. L. M. Feher, A. Nemethi, R. Rimanyi, “Equivariant classes of matrix matroid varieties”, Comment. Math. Helv., 87:4 (2012), 861–889
  12. N. Ford, “The expected codimension of a matroid variety”, J. Algebr. Combin., 41:1 (2015), 29–47
  13. I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. in Math., 44:3 (1982), 279–312
  14. И. М. Гельфанд, В. В. Серганова, “Комбинаторные геометрии и страты тора на однородных многообразиях”, УМН, 42:2(254) (1987), 107–134
  15. I. M. Gelfand, R. M. Goresky, R. D. MacPherson, V. V. Serganova, “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. in Math., 63:3 (1987), 301–316
  16. M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110
  17. M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $overline{M}_{0,n}$”, J. Algebraic Geom., 2:2 (1993), 239–262
  18. Y. Karshon, S. Tolman, “Classification of Hamiltonian torus actions with two-dimensional quotients”, Geom. Topol., 18:2 (2014), 669–716
  19. E. Katz, “Matroid theory for algebraic geometers”, Nonarchimedean and tropical geometry, Simons Symp., Springer, Cham, 2016, 435–517
  20. S. Keel, J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311
  21. F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, 31, Princeton Univ. Press, Princeton, NJ, 1984, i+211 pp.
  22. D. Timashev, “Torus actions of complexity one”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 349–364
  23. Г. M. Циглер, Теория многогранников, МЦНМО, М., 2014, 568 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Бухштабер В.M., Терзич С.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).