Quantum system structures of quantum spaces and entanglement breaking maps

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper is devoted to the classification of quantum systems among the quantum spaces. In the normed case we obtain a complete solution to the problem when an operator space turns out to be an operator system. The min and max quantizations of a local order are described in terms of the min and max envelopes of the related state spaces. Finally, we characterize min-max-completely positive maps between Archimedean order unit spaces and investigate entanglement breaking maps in the general setting of quantum systems.Bibliography: 34 titles.

About the authors

Anar Adıgüzel oğlu Dosi

Middle East Technical University Northern Cyprus Campus

Email: dosiev@yahoo.com
Doctor of physico-mathematical sciences, Professor

References

  1. Н. Бурбаки, Общая топология. Основные структуры, Наука, М., 1968, 272 с.
  2. Man Duen Choi, E. G. Effros, “Injectivity and operator spaces”, J. Funct. Anal., 24:2 (1977), 156–209
  3. Zizhen Chen, Zhongdan Huan, “On the continuity of the $m$th root of a continuous nonnegative definite matrix-valued function”, J. Math. Anal. Appl., 209:1 (1997), 60–66
  4. A. Dosiev, “Local operator spaces, unbounded operators and multinormed $C^{ast}$-algebras”, J. Funct. Anal., 255:7 (2008), 1724–1760
  5. A. Dosi, “Local operator algebras, fractional positivity and the quantum moment problem”, Trans. Amer. Math. Soc., 363:2 (2011), 801–856
  6. A. Dosi, “Quantum duality, unbounded operators, and inductive limits”, J. Math. Phys., 51:6 (2010), 063511, 43 pp.
  7. A. Dosi, “Noncommutative Mackey theorem”, Internat. J. Math., 22:4 (2011), 535–544
  8. A. Dosi, “Quotients of quantum bornological spaces”, Taiwanese J. Math., 15:3 (2011), 1287–1303
  9. А. Доси, “Теорема о биполяре для квантовых конусов”, Функц. анализ и его прил., 46:3 (2012), 84–89
  10. A. Dosi, “Multinormed $W^{ast}$-algebras and unbounded operators”, Proc. Amer. Math. Soc., 140:12 (2012), 4187–4202
  11. A. Dosi, “Quantum cones and their duality”, Houston J. Math., 39:3 (2013), 853–887
  12. A. Dosi, “Quantum systems and representation theorem”, Positivity, 17:3 (2013), 841–861
  13. A. Dosi, “A survey on multinormed von Neumann algebras”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43:1 (2017), 3–67
  14. A. Dosi, “Multinormed semifinite von Neumann algebras, unbounded operators and conditional expectations”, J. Math. Anal. Appl., 466:1 (2018), 573–608
  15. E. G. Effros, Zhong-Jin Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford Univ. Press, New York, 2000, xvi+363 pp.
  16. E. G. Effros, C. Webster, “Operator analogues of locally convex spaces”, Operator algebras and applications (Samos, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997, 163–207
  17. E. G. Effros, S. Winkler, “Matrix convexity: operator analogues of the bipolar and Hahn–Banach theorems”, J. Funct. Anal., 144:1 (1997), 117–152
  18. А. Я. Хелемский, Квантовый функциональный анализ в бескоординатном изложении, МЦНМО, М., 2009, 303 с.
  19. А. Я. Хелемский, Банаховы и полинормированные алгебры: общая теория, представления, гомологии, Наука, М., 1989, 465 с.
  20. А. С. Холево, Квантовые системы, каналы, информация, МЦНМО, М., 2010, 328 с.
  21. H. Hogbe-Nlend, Bornologies and functional analysis. Introductory course on the theory of duality topology-bornology and its use in functional analysis, North-Holland Math. Stud., 26, Notas de Matematica, No. 62, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977, xii+144 pp.
  22. A. Kavruk, V. I. Paulsen, I. G. Todorov, M. Tomforde, “Tensor products of operator systems”, J. Func. Anal., 261:2 (2011), 267–299
  23. A. S. Kavruk, V. I. Paulsen, I. G. Todorov, M. Tomforde, “Quotients, exactness, and nuclearity in the operator system category”, Adv. Math., 235 (2013), 321–360
  24. С. С. Кутателадзе, Основы функционального анализа, 2-е изд., Изд-во ин-та матем. СО РАН им. С. Л. Соболева, Новосибирск, 1995, 224 с.
  25. Дж. Мерфи, $C^*$-алгебры и теория операторов, Факториал, М., 1997, 336 с.
  26. V. I. Paulsen, “The maximal operator space of a normed space”, Proc. Edinburgh Math. Soc. (2), 39:2 (1996), 309–323
  27. V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp.
  28. V. I. Paulsen, I. G. Todorov, M. Tomforde, “Operator system structures on ordered spaces”, Proc. Lond. Math. Soc. (3), 102:1 (2011), 25–49
  29. V. I. Paulsen, M. Tomforde, “Vector spaces with an order unit”, Indiana Univ. Math. J., 58:3 (2009), 1319–1360
  30. G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003, viii+478 pp.
  31. Х. Шеффер, Топологические векторные пространства, Мир, М., 1971, 359 с.
  32. M. Takesaki, Theory of operator algebras I, Encyclopaedia Math. Sci., 124, Oper. Alg. Non-commut. Geom., V, reprint of the 1979 ed., Springer-Verlag, Berlin, 2002, xx+415 pp.
  33. C. J. Webster, Local operator spaces and applications, Ph.D. thesis, Univ. California, Los Angeles, 1997, 135 pp.
  34. T. P. Wihler, “On the Hölder continuity of matrix functions for normal matrices”, JIPAM. J. Inequal. Pure Appl. Math., 10:4 (2009), 91, 5 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Доси А.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).