On a conjecture of Teissier: the case of log canonical thresholds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For a smooth germ of an algebraic variety $(X,0)$ and a hypersurface $(f=0)$ in $X$, with an isolated singularity at $0$, Teissier conjectured a lower bound for the Arnold exponent of $f$ in terms of the Arnold exponent of a hyperplane section $f|_H$ and the invariant $\theta_0(f)$ of the hypersurface. By building on an approach due to Loeser, we prove the conjecture in the case of log canonical thresholds. Bibliography: 21 titles.

About the authors

Eva Elduque

University of Michigan, Department of Mathematics

Mircea Mustaţă

University of Michigan, Department of Mathematics

References

  1. N. Budur, “On Hodge spectrum and multiplier ideals”, Math. Ann., 327:2 (2003), 257–270
  2. J.-P. Demailly, J. Kollar, “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. Ecole Norm. Sup. (4), 34:4 (2001), 525–556
  3. B. Dirks, M. Mustaţă, Minimal exponents of hyperplane sections: a conjecture of Teissier
  4. G.-M. Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007, xii+471 pp.
  5. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  6. Shin-Yao Jow, E. Miller, “Multiplier ideals of sums via cellular resolutions”, Math. Res. Lett., 15:2 (2008), 359–373
  7. J. Kollar, “Singularities of pairs”, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, 221–287
  8. J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  9. R. Lazarsfeld, Positivity in algebraic geometry, v. II, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004, xviii+385 pp.
  10. F. Loeser, “Exposant d'Arnold et sections planes”, C. R. Acad. Sci. Paris Ser. I Math., 298:19 (1984), 485–488
  11. B. Malgrange, “Integrales asymptotiques et monodromie”, Ann. Sci. Ecole Norm. Sup. (4), 7:3 (1974), 405–430
  12. H. Matsumura, Commutative ring theory, Transl. from the Japan., Cambridge Stud. Adv. Math., 8, 2nd ed., Cambridge Univ. Press, Cambridge, 1989, xiv+320 pp.
  13. M. Mustaţă, “Singularities of pairs via jet schemes”, J. Amer. Math. Soc., 15:3 (2002), 599–615
  14. M. Mustaţă, “IMPANGA lecture notes on log canonical thresholds”, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 407–442
  15. M. Mustaţă, M. Popa, “Hodge ideals for ${mathbb Q}$-divisors, $V$-filtration, and minimal exponent”, Forum Math. Sigma, 2018, e19, 41 pp.
  16. J. H. M. Steenbrink, “Semicontinuity of the singularity spectrum”, Invent. Math., 79:3 (1985), 557–565
  17. S. Takagi, “Formulas for multiplier ideals on singular varieties”, Amer. J. Math., 128:6 (2006), 1345–1362
  18. B. Teissier, “Varietes polaires. I. Invariants polaires des singularites d'hypersurfaces”, Invent. Math., 40:3 (1977), 267–292
  19. B. Teissier, “Polyèdre de Newton jacobien et equisingularite”, Seminaire sur les singularites (Paris, 1976/1977), Publ. Math. Univ. Paris VII, 7, Univ. Paris VII, Paris, 1980, 193–221
  20. А. Н. Варченко, “Комплексный показатель особости не меняется вдоль страта $mu = mathrm{const}$”, Функц. анализ и его прил., 16:1 (1982), 1–12
  21. О. Зарисский, П. Самюэль, Коммутативная алгебра, т. 2, ИЛ, М., 1963, 438 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Эльдук Е., Мустата М.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).