Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрим биллиард в плоской области, ограниченной софокусными эллипсами и гиперболами. На материальную точку действует гуковский потенциал. Оказывается, эта динамическая система вполне интегрируема по Лиувиллю. В работе проведен топологический анализ слоения Лиувилля изоэнергетических многообразий всевозможных уровней гамильтониана и построены их полные инварианты Фоменко–Цишанга (меченые молекулы). Библиография: 14 названий.

Об авторах

Сергей Евгеньевич Пустовойтов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: pustovoitovse1@mail.ru

Список литературы

  1. А. Т. Фоменко, Х. Цишанг, “О топологии трехмерных многообразий, возникающих в гамильтоновой механике”, Докл. АН СССР, 294:2 (1987), 283–287
  2. А. Т. Фоменко, “Топологические инварианты гамильтоновых систем, интегрируемых по Лиувиллю”, Функц. анализ и его прил., 22:4 (1988), 38–51
  3. А. Т. Фоменко, “Теория бордизмов интегрируемых гамильтоновых невырожденных систем с двумя степенями свободы. Новый топологический инвариант многомерных интегрируемых систем”, Изв. АН СССР. Сер. матем., 55:4 (1991), 747–779
  4. А. Т. Фоменко, “Топологический инвариант, грубо классифицирующий интегрируемые строго невырожденные гамильтонианы на четырехмерных симплектических многообразиях”, Функц. анализ и его прил., 25:4 (1991), 23–35
  5. Е. А. Кудрявцева, И. М. Никонов, А. Т. Фоменко, “Максимально симметричные клеточные разбиения поверхностей и их накрытия”, Матем. сб., 199:9 (2008), 3–96
  6. A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975
  7. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
  8. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
  9. В. И. Драгович, “Интегрируемые возмущения биллиарда Биркгофа внутри эллипса”, ПММ, 62:1 (1998), 166–169
  10. С. Е. Пустовойтов, “Топологический анализ биллиарда в эллиптическом кольце в потенциальном поле”, Фундамент. и прикл. матем., 22:6 (2019), 201–225
  11. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
  12. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
  13. В. В. Козлов, “Некоторые интегрируемые обобщения задачи Якоби о геодезических на эллипсоиде”, ПММ, 59:1 (1995), 3–9
  14. М. П. Харламов, “Топологический анализ и булевы функции: I. Методы и приложения к классическим системам”, Нелинейная динам., 6:4 (2010), 769–805

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Пустовойтов С.Е., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).