General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $(X, C)$ be a germ of a threefold $X$ with terminal singularities along a connected reduced complete curve $C$ with a contraction $f \colon (X, C) \to (Z, o)$ such that $C = f^{-1} (o)_{\mathrm{red}}$ and $-K_X$ is $f$-ample. Assume that each irreducible component of $C$ contains at most one point of index ${>2}$. We prove that a general member $D\in |{-}K_X|$ is a normal surface with Du Val singularities. Bibliography: 16 titles.

About the authors

Shigefumi Mori

Kyoto University Institute for Advanced Study; Research Institute for Mathematical Sciences, Kyoto University; Chubu University

Email: mori@kurims.kyoto-u.ac.jp

Yuri Gennadievich Prokhorov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Yu. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163
  2. J. Kollar, S. Mori, “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703
  3. J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  4. J. Kollar, “Real algebraic threefolds. III. Conic bundles”, J. Math. Sci. (N.Y.), 94:1 (1999), 996–1020
  5. J. Kollar, N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math., 91:2 (1988), 299–338
  6. S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253
  7. S. Mori, “On semistable extremal neighborhoods”, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002, 157–184
  8. S. Mori, “Errata to “Classification of three-dimensional flips””, J. Amer. Math. Soc., 20:1 (2007), 269–271
  9. S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369
  10. S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles. II”, Publ. Res. Inst. Math. Sci., 44:3 (2008), 955–971
  11. S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles. III”, Publ. Res. Inst. Math. Sci., 45:3 (2009), 787–810
  12. S. Mori, Yu. Prokhorov, “Threefold extremal contractions of type (IA)”, Kyoto J. Math., 51:2 (2011), 393–438
  13. Ш. Мори, Ю. Г. Прохоров, “Трехмерные экстремальные окрестности кривой с одной негоренштейновой точкой”, Изв. РАН. Сер. матем., 83:3 (2019), 158–212
  14. Ю. Г. Прохоров, “О дополняемости канонического дивизора для расслоений Мори на коники”, Матем. сб., 188:11 (1997), 99–120
  15. M. Reid, “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414
  16. В. В. Шокуров, “Трехмерные логперестройки”, Изв. РАН. Сер. матем., 56:1 (1992), 105–203

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Мори Ш., Прохоров Ю.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).