Versal families of elliptic curves with rational 3-torsion

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For an arbitrary field of characteristic different from 2 and 3, we construct versal families of elliptic curves whose 3-torsion is either rational or isomorphic to $\mathbb Z/3\mathbb Z\oplus \mu_3$ as a Galois module. Bibliography: 10 titles.

Sobre autores

Boris Bekker

St. Petersburg State University, Mathematics and Mechanics Faculty

Email: bekker@pdmi.ras.ru
Candidate of physico-mathematical sciences, Associate professor

Yuri Zarhin

Department of Mathematics, Pennsylvania State University

Email: zarhin@math.psu.edu
Doctor of physico-mathematical sciences, Professor

Bibliografia

  1. Б. М. Беккер, Ю. Г. Зархин, “Деление на $2$ рациональных точек на эллиптических кривых”, Алгебра и анализ, 29:4 (2017), 196–239
  2. B. M. Bekker, Yu. G. Zarhin, “Families of elliptic curves with rational torsion points of even order”, Algebraic curves and their applications, Contemp. Math., 724, Amer. Math. Soc., Providence, RI, 2019, 1–32
  3. B. M. Bekker, Yu. G. Zarhin, “Torsion points of order $ 2g {+} 1 $ on odd degree hyperelliptic curves of genus $ g $”, Trans. Amer. Math. Soc., 373:11 (2020), 8059–8094
  4. D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237
  5. K. Rubin, A. Silverberg, “Families of elliptic curves with constant $operatorname{mod} p$ representations”, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Intl. Press, Cambridge, MA, 1995, 148–161
  6. K. Rubin, A. Silverberg, “Mod 6 representations of elliptic curves”, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., 66, Part 1, Amer. Math. Soc., Providence, RI, 1999, 213–220
  7. K. Rubin, A. Silverberg, “Mod $2$ representations of elliptic curves”, Proc. Amer. Math. Soc., 129:1 (2001), 53–57
  8. A. Silverberg, “Explicit families of elliptic curves with prescribed $operatorname{mod} N$ representations”, Modular forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997, 447–461
  9. J. H. Silverman, J. Tate, Rational points on elliptic curves, Undergrad. Texts Math., Springer-Verlag, New York, 1992, x+281 pp.
  10. A. Wiles, “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. (2), 141:3 (1995), 443–551

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Беккер Б.M., Зархин Ю.G., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).