On defining functions and cores for unbounded domains. III

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We extend the authors' results on existence of global defining functions to a number of different settings. In particular, we relax the assumption on strict pseudoconvexity of the domain to strict $q$-pseudoconvexity and we consider more general situations, where the ambient space is an almost complex manifold or a complex space. We also investigate to what extent the assumption on smoothness of the boundary of the domains under consideration is necessary in our results. Bibliography: 27 titles.

About the authors

Tobias Harz

University of Wuppertal

Email: harz@math.uni-wuppertal.de

Nikolai Vasil'evich Shcherbina

University of Wuppertal

Email: shcherbina@math.uni-wuppertal.de

Giuseppe Tomassini

Scuola Normale Superiore

References

  1. A. Andreotti, H. Grauert, “Theorèmes de finitude pour la cohomologie des espaces complexes”, Bull. Soc. Math. France, 90 (1962), 193–259
  2. J.-P. Demailly, Complex analytic and differential geometry, 2012
  3. K. Diederich, A. Sukhov, “Plurisubharmonic exhaustion functions and almost complex Stein structures”, Michigan Math. J., 56:2 (2008), 331–355
  4. K. Diederich, J. E. Fornaess, “Smoothing $q$-convex functions and vanishing theorems”, Invent. Math., 82:2 (1985), 291–305
  5. G. Fischer, Complex analytic geometry, Lecture Notes in Math., 538, Springer-Verlag, Berlin–New York, 1976, vii+201 pp.
  6. J. E. Fornaess, R. Narasimhan, “The Levi problem on complex spaces with singularities”, Math. Ann., 248:1 (1980), 47–72
  7. J. E. Fornaess, B. Stensones, Lectures on counterexamples in several complex variables, Math. Notes, 33, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1987, viii+248 pp.
  8. M. Fraboni, T. Napier, “Strong $q$-convexity in uniform neighborhoods of subvarieties in coverings of complex spaces”, Math. Z., 265:3 (2010), 653–685
  9. H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368
  10. H. Grauert, O. Riemenschneider, “Kählersche Mannigfaltigkeiten mit hyper-$q$-konvexem Rand”, Problems in analysis, Lectures sympos. in honor of S. Bochner (Princeton Univ., Princeton, NJ, 1969), Princeton Univ. Press, Princeton, NJ, 1970, 61–79
  11. F. R. Harvey, H. B. Lawson, “Potential theory on almost complex manifolds”, Ann. Inst. Fourier (Grenoble), 65:1 (2015), 171–210
  12. F. R. Harvey, H. B. Lawson, Jr., S. Plis, “Smooth approximation of plurisubharmonic functions on almost complex manifolds”, Math. Ann., 366:3-4 (2016), 929–940
  13. T. Harz, N. Shcherbina, G. Tomassini, “On defining functions and cores for unbounded domains. I”, Math. Z., 286:3-4 (2017), 987–1002
  14. T. Harz, N. Shcherbina, G. Tomassini, “On defining functions and cores for unbounded domains. II”, J. Geom. Anal., 30:3 (2020), 2293–2325
  15. G. M. Henkin, J. Leiterer, Theory of functions on complex manifolds, Monogr. Math., 79, Birkhäuser Verlag, Basel, 1984, 226 pp.
  16. G. M. Henkin, J. Leiterer, Andreotti–Grauert theory by integral formulas, Progr. Math., 74, Birkhäuser Boston, Inc., Boston, MA, 1988, 270 pp.
  17. S. Ivashkovich, J.-P. Rosay, “Schwarz-type lemmas for solutions of $overline{partial}$-inequalities and complete hyperbolicity of almost complex manifolds”, Ann. Inst. Fourier (Grenoble), 54:7 (2004), 2387–2435
  18. J. Morrow, H. Rossi, “Some theorems of algebraicity for complex spaces”, J. Math. Soc. Japan, 27:2 (1975), 167–183
  19. R. Narasimhan, “The Levi problem for complex spaces”, Math. Ann., 142 (1960/61), 355–365
  20. R. Narasimhan, “The Levi problem for complex spaces. II”, Math. Ann., 146 (1962), 195–216
  21. A. Nijenhuis, W. B. Woolf, “Some integration problems in almost-complex and complex manifolds”, Ann. of Math. (2), 77:3 (1963), 424–489
  22. S. Plis, “The Monge–Ampère equation on almost complex manifolds”, Math. Z., 276:3-4 (2014), 969–983
  23. S. Plis, “Monge–Ampère operator on four dimensional almost complex manifolds”, J. Geom. Anal., 26:4 (2016), 2503–2518
  24. R. Richberg, “Stetige streng pseudokonvexe Funktionen”, Math. Ann., 175 (1968), 257–286
  25. P. A. N. Smith, “Smoothing plurisubharmonic functions on complex spaces”, Math. Ann., 273:3 (1986), 397–413
  26. G. Tomassini, “Sur les algèbres $A^0(overline D)$ et $A^infty(overline D)$ d'un domaine pseudoconvexe non borne”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:2 (1983), 243–256
  27. V. Vâjâitu, “On the equivalence of the definitions of $q$-convex spaces”, Arch. Math. (Basel), 61:6 (1993), 567–575

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Харц Т., Щербина Н.V., Томассини Д.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).