Construction of invariant Lyapunov norms of planar dynamical systems
- Authors: Musaeva A.M.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Issue: Vol 214, No 9 (2023)
- Pages: 27-57
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/142333
- DOI: https://doi.org/10.4213/sm9821
- ID: 142333
Cite item
Abstract
We consider the problem of the stability of linear dynamical switching systems. It is known that an irreducible
About the authors
Asiiat Magomedovna Musaeva
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Author for correspondence.
Email: math-net2025_06@mi-ras.ru
without scientific degree, no status
References
- D. Liberzon, Switching in systems and control, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 pp.
- D. Liberzon, A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag., 19:5 (1999), 59–70
- F. Blanchini, S. Miani, “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Automat. Control, 44:3 (1999), 641–647
- U. Boscain, “A review on stability of switched systems for arbitrary switchings”, Geometric control and nonsmooth analysis, Ser. Adv. Math. Appl. Sci., 76, World Sci. Publ., Hackensack, NJ, 2008, 100–119
- A. P. Molchanov, Ye. S. Pyatnitskiy, “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Systems Control Lett., 13:1 (1989), 59–64
- F. Blanchini, S. Miani, “Piecewise-linear functions in robust control”, Robust control via variable structure and Lyapunov techniques (Benevento, 1994), Lect. Notes Control Inf. Sci., 217, Springer-Verlag London, Ltd., London, 1996, 213–243
- N. Guglielmi, L. Laglia, V. Protasov, “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623
- Н. Е. Барабанов, “Об абсолютном характеристическом показателе класса линейных нестационарных систем дифференциальных уравнений”, Сиб. матем. журн., 29:4 (1988), 12–22
- R. N. Shorten, K. S. Narendra, “Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems”, Proceedings of the 1999 American control conference (San Diego, CA), v. 2, IEEE, 1999, 1410–1414
- Y. Chitour, M. Gaye, P. Mason, “Geometric and asymptotic properties associated with linear switched systems”, J. Differential Equations, 259:11 (2015), 5582–5616
- I. D. Moris, An irreducible linear switching system whose unique Barabanov norm is not strictly convex
- D. V. Shatov, “Stability of a certain class of second order switched systems”, 20th IFAC conference on technology, culture, and international stability TECIS 2021 (Moscow, 2021), IFAC-PapersOnLine, 54:13 (2021), 425–430
- D. V. Shatov, “Analysis of stability and dwell time of a certain class of switched systems with second order subsystems”, 16th international conference on stability and oscillations of nonlinear control systems (Pyatnitskiy's conference) (Moscow, 2022), IEEE, 2022, 1–4
- M. Margaliot, “Stability analysis of switched systems using variational principles: an introduction”, Automatica J. IFAC, 42:12 (2006), 2059–2077
- M. Balde, U. Boscain, P. Mason, “A note on stability conditions for planar switched systems”, Internat. J. Control, 82:10 (2009), 1882–1888
- M. Balde, U. Boscain, “Stability of planar switched systems: the nondiagonalizable case”, Commun. Pure Appl. Anal., 7:1 (2008), 1–21
- M. Benaïm, S. Le Borgne, F. Malrieu, P. Zitt, “On the stability of planar randomly switched systems”, Ann. Appl. Probab., 24:1 (2014), 292–311
- L. Greco, F. Tocchini, M. Innocenti, “A geometry-based algorithm for the stability of planar switching systems”, Internat. J. Systems Sci., 37:11 (2006), 747–761
- Shen Cong, “Stability analysis for planar discrete-time linear switching systems via bounding joint spectral radius”, Systems Control Lett., 96 (2016), 7–10
- В. Ю. Протасов, “Совместный спектральный радиус и инвариантные множества линейных операторов”, Фундамент. и прикл. матем., 2:1 (1996), 205–231
- В. Ю. Протасов, “О гладкости кривых де Рама”, Изв. РАН. Сер. матем., 68:3 (2004), 139–180
- V. D. Blondel, J. Theys, A. A. Vladimirov, “An elementary counterexample to the finiteness conjecture”, SIAM J. Matrix Anal. Appl., 24:4 (2003), 963–979
- В. С. Козякин, “О вычислительных аспектах теории совместного спектрального радиуса”, Докл. РАН, 427:2 (2009), 160–164
- K. G. Hare, I. D. Morris, N. Sidorov, J. Theys, “An explicit counterexample to the Lagarias–Wang finiteness conjecture”, Adv. Math., 226:6 (2011), 4667–4701
- I. D. Morris, N. Sidorov, “On a devil's staircase associated to the joint spectral radii of a family of pairs of matrices”, J. Eur. Math. Soc. (JEMS), 15:5 (2013), 1747–1782
- A. Cicone, N. Guglielmi, S. Serra-Capizzano, M. Zennaro, “Finiteness property of pairs of $2 times 2$ sign-matrices via real extremal polytope norms”, Linear Algebra Appl., 432:2-3 (2010), 796–816
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
- J. N. Tsitsiklis, V. D. Blondel, “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard–when not impossible–to compute and to approximate”, Math. Control Signals Systems, 10:1 (1997), 31–40
- V. Yu. Protasov, “The Barabanov norm is generically unique, simple, and easily computed”, SIAM J. Control Optim., 60:4 (2022), 2246–2267
Supplementary files
