On the eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential
- 作者: Lyalinov M.A.1
-
隶属关系:
- Saint Petersburg State University
- 期: 卷 214, 编号 10 (2023)
- 页面: 71-97
- 栏目: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/140517
- DOI: https://doi.org/10.4213/sm9861
- ID: 140517
如何引用文章
详细
We are concerned with generalized eigenfunctions of the continuous (essential) spectrum for the Schrödinger operator with singular δ-potential that has support on the sides of an angle in the plane. Operators of this kind appear in quantum-mechanical models for quantum state destruction of two point-interacting quantum particles of which one is reflected by a potential barrier. We propose an approach capable of constructing integral representations for eigenfunctions in terms of the solution of a functional-difference equation with spectral parameter. Solutions of this equation are studied by reduction to an integral equation, with the subsequent study of the spectral properties of the corresponding integral operator. We also construct an asymptotic formula for the eigenfunction at large distances. For this formula a physical interpretation from the point of view of wave scattering is given.
Our approach can be used to deal with eigenfunctions in a broad class of related problems for the Schrödinger operator with singular potential.
参考
- R. Jost, “Mathematical analysis of a simple model for the stripping reaction”, Z. Angew. Math. Phys., 6 (1955), 316–326
- S. Albeverio, “Analytische Lösung eines idealisierten Stripping- oder Beugungsproblems”, Helv. Phys. Acta, 40 (1967), 135–184
- M. A. Lyalinov, “Functional difference equations and eigenfunctions of a Schrödinger operator with $delta'$-interaction on a circular conical surface”, Proc. A, 476:2241 (2020), 20200179, 23 pp.
- M. A. Lyalinov, “Eigenoscillations in an angular domain and spectral properties of functional equations”, European J. Appl. Math., 33:3 (2022), 538–559
- M. A. Lyalinov, “Functional-difference equations and their link with perturbations of the Mehler operator”, Russ. J. Math. Phys., 29:3 (2022), 378–396
- M. Gaudin, B. Derrida, “Solution exacte d'un problème modèle à trois corps. Etat lie”, J. Physique, 36:12 (1975), 1183–1197
- L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality”, Comm. Math. Phys., 219:1 (2001), 199–219
- A. Fedotov, F. Sandomirskiy, “An exact renormalization formula for the Maryland model”, Comm. Math. Phys., 334:2 (2015), 1083–1099
- J. M. L. Bernard, Methode analytique et transformees fonctionnelles pour la diffraction d'ondes par une singularite conique: equation integrale de noyau non oscillant pour le cas d'impedance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997
- M. A. Lyalinov, Ning Yan Zhu, “Acoutic scattering by a circular semi-transparent conical surface”, J. Engrg. Math., 59:4 (2007), 385–398
- В. М. Бабич, М. А. Лялинов, В. Э. Грикуров, Метод Зоммерфельда–Малюжинца в теории дифракции, СПбГУ, СПб., 2003, 104 с.
- J. B. Lawrie, A. C. King, “Exact solution to a class of functional difference equations with application to a moving contact line flow”, European J. Appl. Math., 5:2 (1994), 141–157
- J. Behrndt, P. Exner, V. Lotoreichik, “Schrödinger operators with $delta$- and $delta'$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26:8 (2014), 1450015, 43 pp.
- И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, 4-е изд., Физматгиз, М., 1963, 1100 с.
- F. G. Mehler, “Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194
- Д. Р. Яфаев, Математическая теория рассеяния. Общая теория, Изд-во С.-Петербургского ун-та, СПб., 1994, 423 с.
- M. A. Lyalinov, N. Y. Zhu, “Scattering of a surface wave in a polygonal domain with impedance boundary”, Алгебра и анализ, 33:2 (2021), 98–135
补充文件
