On a weak topology for Hadamard spaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigate whether existing notions of weak sequential convergence in Hadamard spaces can be induced by a topology. We provide an affirmative answer on what we call weakly proper Hadamard spaces. Several results from classical functional analysis are extended to the setting of Hadamard spaces. A notion of dual space is proposed and it is shown that our weak topology and dual space coincide with the standard ones in the case of a Hilbert space. We introduce the space of geodesic segments together with a corresponding weak topology, and we show that this space is homeomorphic to its underlying Hadamard space. As an application we show the existence of a geodesic segment that acts as the direction of steepest descent for a geodesically differentiable function satisfying certain properties. Finally we compare our topology with other existing notions of weak topologies.

About the authors

Arian Bёrdёllima

Institut für Mathematik, Technische Universität Berlin

Email: berdellima@gmail.com
Doctor of Science, Scientific Employee

References

  1. А. Д. Александров, “Одна теорема о треугольниках в метрическом пространстве и некоторые ее приложения”, Сборник статей. Посвящается академику Ивану Матвеевичу Виноградову к его 60-летию, Тр. МИАН СССР, 38, Изд-во АН СССР, М., 1951, 5–23
  2. S. Baratella, Ng Siu-Ah, “A nonstandard proof of the Eberlein–Šmulian theorem”, Proc. Amer. Math. Soc., 131:10 (2003), 3177–3180
  3. A. Bërdëllima, Investigations in Hadamard spaces, Ph.D. thesis, Georg–August-Univ., Göttingen, 2020, 131 pp.
  4. I. D. Berg, I. G. Nikolaev, “Quasilinearization and curvature of Aleksandrov spaces”, Geom. Dedicata, 133 (2008), 195–218
  5. M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999, xxii+643 pp.
  6. Д. Ю. Бураго, Ю. Д. Бураго, С. В. Иванов, Курс метрической геометрии, Ин-т компьютерных исследований, М.–Ижевск, 2004, 512 с.
  7. M. Bačak, Convex analysis and optimization in Hadamard spaces, De Gruyter Ser. Nonlinear Anal. Appl., 22, De Gruyter, Berlin, 2014, viii+185 pp.
  8. M. Bačak, Old and new challenges in Hadamard spaces
  9. R. Espinola, A. Fernandez-Leon, “$mathrm{CAT}(kappa)$-spaces, weak convergence and fixed points”, J. Math. Anal. Appl., 353:1 (2009), 410–427
  10. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Transl. from the French, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp.
  11. M. L. Gromov, “$mathrm{CAT}(kappa)$-spaces: construction and concentration”, Геометрия и топология. 7, Зап. науч. сем. ПОМИ, 280, ПОМИ, СПб., 2001, 101–140
  12. J. Jost, “Equilibrium maps between metric spaces”, Calc. Var. Partial Differential Equations, 2 (1994), 173–204
  13. B. A. Kakavandi, “Weak topologies in complete $CAT(0)$ metric spaces”, Proc. Amer. Math. Soc., 141:3 (2013), 1029–1039
  14. M. Kell, “Uniformly convex metric spaces”, Anal. Geom. Metr. Spaces, 2:1 (2014), 359–380
  15. Дж. Л. Келли, Общая топология, 2-е изд., Наука, М., 1981, 432 с.
  16. Teck-Cheong Lim, “Remarks on some fixed point theorems”, Proc. Amer. Math. Soc., 60 (1976), 179–182
  17. A. Lytchak, A. Petrunin, “Weak topology on $mathrm{CAT}(0)$ spaces”, Israel J. Math., 255:2 (2023), 763–781
  18. B. Mendelson, Introduction to topology, 3rd ed., Allyn and Bacon, Inc., Boston, MA, 1975, ix+206 pp.
  19. Ph. Miller, A. Bërdëllima, M. Wardetzky, Weak topologies for unbounded nets in $mathrm{CAT}(0)$ spaces
  20. N. Monod, “Superrigidity for irreducible lattices and geometric splitting”, J. Amer. Math. Soc., 19:4 (2006), 781–814
  21. J. R. Munkres, Topology, 2nd ed., Prentice Hail, Inc., Upper Saddle River, NJ, 2000, xvi+537 pp.
  22. S. Alexander, V. Kapovitch, A. Petrunin, An invitation to Alexandrov geometry. $mathrm{CAT}(0)$ spaces, SpringerBriefs Math., Springer, Cham, 2019, xii+88 pp.
  23. Е. Н. Сосов, “Об аналогах слабой сходимости в специальном метрическом пространстве”, Изв. вузов. Матем., 2004, № 5, 84–89
  24. R. Whitley, “An elementary proof of the Eberlein–Šmulian theorem”, Math. Ann., 172:2 (1967), 116–118

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Бёрделлима А.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).