On the weighted Bojanov-Chebyshev problem and Fenton's sum of translates method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Minimax and maximin problems are investigated for a special class of functions on the interval [0,1]. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev.

About the authors

Bálint Farkas

University of Wuppertal

Author for correspondence.
Email: farkas@math.uni-wuppertal.de

Béla Nagy

Bolyai Institute, University of Szeged

Email: nbela@math.u-szeged.hu

Szilárd György Révész

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

Email: revesz.szilard@renyi.hu
Doctor of Science, Professor

References

  1. G. Ambrus, K. M. Ball, T. Erdelyi, “Chebyshev constants for the unit circle”, Bull. Lond. Math. Soc., 45:2 (2013), 236–248
  2. A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics Appl. Math., 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, xx+340 pp.
  3. B. Bojanov, N. Naidenov, “Exact Markov-type inequalities for oscillating perfect splines”, Constr. Approx., 18:1 (2002), 37–59
  4. B. Bojanov, N. Naidenov, “Alternation property and Markov's inequality for Tchebycheff systems”, East J. Approx., 10:4 (2004), 481–503
  5. B. D. Bojanov, Q. I. Rahman, “On certain extremal problems for polynomials”, J. Math. Anal. Appl., 189:3 (1995), 781–800
  6. B. D. Bojanov, “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300
  7. P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp.
  8. О. В. Давыдов, “Теорема об ужах для слабых декартовых систем”, Укр. матем. журн., 47:3 (1995), 315–321
  9. O. V. Davydov, “A class of weak Chebyshev spaces and characterization of best approximations”, J. Approx. Theory, 81:2 (1995), 250–259
  10. B. Farkas, B. Nagy, S. G. Revesz, “A homeomorphism theorem for sums of translates”, Rev. Mat. Complut., 2023, 1–49, Publ. online
  11. B. Farkas, B. Nagy, Sz. Gy. Revesz, “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5:1 (2018), 1–46
  12. P. C. Fenton, “The minimum of small entire functions”, Proc. Amer. Math. Soc., 81:4 (1981), 557–561
  13. P. C. Fenton, “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222
  14. P. C. Fenton, “$cospilambda$ again”, Proc. Amer. Math. Soc., 131:6 (2003), 1875–1880
  15. P. C. Fenton, “A refined $cospirho$ theorem”, J. Math. Anal. Appl., 311:2 (2005), 675–682
  16. А. А. Гольдберг, “О минимуме модуля мероморфной функции медленного роста”, Матем. заметки, 25:6 (1979), 835–844
  17. A. Haar, “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78:1 (1917), 294–311
  18. D. P. Hardin, A. P. Kendall, E. B. Saff, “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Comput. Geom., 50:1 (2013), 236–243
  19. S. Karlin, “Representation theorems for positive functions”, J. Math. Mech., 12 (1963), 599–617
  20. С. Карлин, В. Стадден, Чебышевские системы и их применение в анализе и статистике, Наука, М., 1976, 568 с.
  21. G. Nikolov, A. Shadrin, “On Markov–Duffin–Schaeffer inequalities with a majorant”, Constructive theory of functions (Sozopol, 2010), Prof. M. Drinov Acad. Publ. House, Sofia, 2012, 227–264
  22. G. Nikolov, A. Shadrin, “On Markov–Duffin–Schaeffer inequalities with a majorant. II”, Constructive theory of functions (Sozopol, 2013), Prof. M. Drinov Acad. Publ. House, Sofia, 2014, 175–197
  23. G. P. Nikolov, “Snake polynomials and Markov-type inequalities”, Approximation theory, DARBA, Sofia, 2002, 342–352
  24. T. Parthasarathy, On global univalence theorems, Lecture Notes in Math., 977, Springer-Verlag, Berlin–New York, 1983, viii+106 pp.
  25. R. A. Rankin, “On the closest packing of spheres in $n$ dimensions”, Ann. of Math. (2), 48:4 (1947), 1062–1081

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Farkas B., Nagy B., Révész S.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).