On the weighted Bojanov-Chebyshev problem and Fenton's sum of translates method
- 作者: Farkas B.1, Nagy B.2, Révész S.G.3
-
隶属关系:
- University of Wuppertal
- Bolyai Institute, University of Szeged
- Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
- 期: 卷 214, 编号 8 (2023)
- 页面: 119-150
- 栏目: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133547
- DOI: https://doi.org/10.4213/sm9714
- ID: 133547
如何引用文章
详细
Minimax and maximin problems are investigated for a special class of functions on the interval [0,1]. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev.
作者简介
Bálint Farkas
University of Wuppertal
编辑信件的主要联系方式.
Email: farkas@math.uni-wuppertal.de
Béla Nagy
Bolyai Institute, University of Szeged
Email: nbela@math.u-szeged.hu
Szilárd Révész
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
Email: revesz.szilard@renyi.hu
Doctor of Science, Professor
参考
- G. Ambrus, K. M. Ball, T. Erdelyi, “Chebyshev constants for the unit circle”, Bull. Lond. Math. Soc., 45:2 (2013), 236–248
- A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics Appl. Math., 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, xx+340 pp.
- B. Bojanov, N. Naidenov, “Exact Markov-type inequalities for oscillating perfect splines”, Constr. Approx., 18:1 (2002), 37–59
- B. Bojanov, N. Naidenov, “Alternation property and Markov's inequality for Tchebycheff systems”, East J. Approx., 10:4 (2004), 481–503
- B. D. Bojanov, Q. I. Rahman, “On certain extremal problems for polynomials”, J. Math. Anal. Appl., 189:3 (1995), 781–800
- B. D. Bojanov, “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300
- P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp.
- О. В. Давыдов, “Теорема об ужах для слабых декартовых систем”, Укр. матем. журн., 47:3 (1995), 315–321
- O. V. Davydov, “A class of weak Chebyshev spaces and characterization of best approximations”, J. Approx. Theory, 81:2 (1995), 250–259
- B. Farkas, B. Nagy, S. G. Revesz, “A homeomorphism theorem for sums of translates”, Rev. Mat. Complut., 2023, 1–49, Publ. online
- B. Farkas, B. Nagy, Sz. Gy. Revesz, “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5:1 (2018), 1–46
- P. C. Fenton, “The minimum of small entire functions”, Proc. Amer. Math. Soc., 81:4 (1981), 557–561
- P. C. Fenton, “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222
- P. C. Fenton, “$cospilambda$ again”, Proc. Amer. Math. Soc., 131:6 (2003), 1875–1880
- P. C. Fenton, “A refined $cospirho$ theorem”, J. Math. Anal. Appl., 311:2 (2005), 675–682
- А. А. Гольдберг, “О минимуме модуля мероморфной функции медленного роста”, Матем. заметки, 25:6 (1979), 835–844
- A. Haar, “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78:1 (1917), 294–311
- D. P. Hardin, A. P. Kendall, E. B. Saff, “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Comput. Geom., 50:1 (2013), 236–243
- S. Karlin, “Representation theorems for positive functions”, J. Math. Mech., 12 (1963), 599–617
- С. Карлин, В. Стадден, Чебышевские системы и их применение в анализе и статистике, Наука, М., 1976, 568 с.
- G. Nikolov, A. Shadrin, “On Markov–Duffin–Schaeffer inequalities with a majorant”, Constructive theory of functions (Sozopol, 2010), Prof. M. Drinov Acad. Publ. House, Sofia, 2012, 227–264
- G. Nikolov, A. Shadrin, “On Markov–Duffin–Schaeffer inequalities with a majorant. II”, Constructive theory of functions (Sozopol, 2013), Prof. M. Drinov Acad. Publ. House, Sofia, 2014, 175–197
- G. P. Nikolov, “Snake polynomials and Markov-type inequalities”, Approximation theory, DARBA, Sofia, 2002, 342–352
- T. Parthasarathy, On global univalence theorems, Lecture Notes in Math., 977, Springer-Verlag, Berlin–New York, 1983, viii+106 pp.
- R. A. Rankin, “On the closest packing of spheres in $n$ dimensions”, Ann. of Math. (2), 48:4 (1947), 1062–1081
补充文件
