On the weighted Bojanov-Chebyshev problem and Fenton's sum of translates method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Minimax and maximin problems are investigated for a special class of functions on the interval [0,1]. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev.

作者简介

Bálint Farkas

University of Wuppertal

编辑信件的主要联系方式.
Email: farkas@math.uni-wuppertal.de

Béla Nagy

Bolyai Institute, University of Szeged

Email: nbela@math.u-szeged.hu

Szilárd Révész

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

Email: revesz.szilard@renyi.hu
Doctor of Science, Professor

参考

  1. G. Ambrus, K. M. Ball, T. Erdelyi, “Chebyshev constants for the unit circle”, Bull. Lond. Math. Soc., 45:2 (2013), 236–248
  2. A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics Appl. Math., 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, xx+340 pp.
  3. B. Bojanov, N. Naidenov, “Exact Markov-type inequalities for oscillating perfect splines”, Constr. Approx., 18:1 (2002), 37–59
  4. B. Bojanov, N. Naidenov, “Alternation property and Markov's inequality for Tchebycheff systems”, East J. Approx., 10:4 (2004), 481–503
  5. B. D. Bojanov, Q. I. Rahman, “On certain extremal problems for polynomials”, J. Math. Anal. Appl., 189:3 (1995), 781–800
  6. B. D. Bojanov, “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300
  7. P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp.
  8. О. В. Давыдов, “Теорема об ужах для слабых декартовых систем”, Укр. матем. журн., 47:3 (1995), 315–321
  9. O. V. Davydov, “A class of weak Chebyshev spaces and characterization of best approximations”, J. Approx. Theory, 81:2 (1995), 250–259
  10. B. Farkas, B. Nagy, S. G. Revesz, “A homeomorphism theorem for sums of translates”, Rev. Mat. Complut., 2023, 1–49, Publ. online
  11. B. Farkas, B. Nagy, Sz. Gy. Revesz, “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5:1 (2018), 1–46
  12. P. C. Fenton, “The minimum of small entire functions”, Proc. Amer. Math. Soc., 81:4 (1981), 557–561
  13. P. C. Fenton, “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222
  14. P. C. Fenton, “$cospilambda$ again”, Proc. Amer. Math. Soc., 131:6 (2003), 1875–1880
  15. P. C. Fenton, “A refined $cospirho$ theorem”, J. Math. Anal. Appl., 311:2 (2005), 675–682
  16. А. А. Гольдберг, “О минимуме модуля мероморфной функции медленного роста”, Матем. заметки, 25:6 (1979), 835–844
  17. A. Haar, “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78:1 (1917), 294–311
  18. D. P. Hardin, A. P. Kendall, E. B. Saff, “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Comput. Geom., 50:1 (2013), 236–243
  19. S. Karlin, “Representation theorems for positive functions”, J. Math. Mech., 12 (1963), 599–617
  20. С. Карлин, В. Стадден, Чебышевские системы и их применение в анализе и статистике, Наука, М., 1976, 568 с.
  21. G. Nikolov, A. Shadrin, “On Markov–Duffin–Schaeffer inequalities with a majorant”, Constructive theory of functions (Sozopol, 2010), Prof. M. Drinov Acad. Publ. House, Sofia, 2012, 227–264
  22. G. Nikolov, A. Shadrin, “On Markov–Duffin–Schaeffer inequalities with a majorant. II”, Constructive theory of functions (Sozopol, 2013), Prof. M. Drinov Acad. Publ. House, Sofia, 2014, 175–197
  23. G. P. Nikolov, “Snake polynomials and Markov-type inequalities”, Approximation theory, DARBA, Sofia, 2002, 342–352
  24. T. Parthasarathy, On global univalence theorems, Lecture Notes in Math., 977, Springer-Verlag, Berlin–New York, 1983, viii+106 pp.
  25. R. A. Rankin, “On the closest packing of spheres in $n$ dimensions”, Ann. of Math. (2), 48:4 (1947), 1062–1081

补充文件

附件文件
动作
1. JATS XML

版权所有 © Farkas B., Nagy B., Révész S.G., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».