A remark on 0-cycles as modules over algebras of finite correspondences

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Given a smooth projective variety X">X over a field, consider the Q">Q-vector space Z0(X)">Z0(X) of 0-cycles (that is, formal finite Q">Q-linear combinations of closed points of X">X) as a module over the algebra of finite correspondences. Then the rationally trivial 0-cycles on X">X form an absolutely simple and essential submodule of Z0(X)">Z0(X).

About the authors

Marat Zefirovich Rovinskii

Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE); Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

Author for correspondence.
Email: marat@mccme.ru
Doctor of physico-mathematical sciences

References

  1. A. Beilinson, “Remarks on $n$-motives and correspondences at the generic point”, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., 3, no. 1, Int. Press, Somerville, MA, 2002, 35–46
  2. J. Bernstein, Draft of: Representations of $p$-adic groups, Lectures, written by K. E. Rumelhart (Harvard Univ., 1992), 110 pp.
  3. P. Cartier, “Representations of $mathfrak p$-adic groups: a survey”, Automorphic forms, representations and $L$-functions, Part 1 (Oregon State Univ., Corvallis, OR, 1977), Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155
  4. E. M. Friedlander, V. Voevodsky, “Bivariant cycle cohomology”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 138–187
  5. У. Фултон, Теория пересечений, Мир, М., 1989, 583 с.
  6. R. S. Irving, “The socle filtration of a Verma module”, Ann. Sci. Ecole Norm. Sup. (4), 21:1 (1988), 47–65
  7. U. Jannsen, “Motives, numerical equivalence, and semi-simplicity”, Invent. Math., 107:3 (1992), 447–452
  8. U. Jannsen, “Motivic sheaves and filtrations on Chow groups”, Motives, Part 1, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 245–302
  9. K. S. Kedlaya, “More etale covers of affine spaces in positive characteristic”, J. Algebraic Geom., 14:1 (2005), 187–192
  10. M. Levine, “Mixed motives”, Handbook of $K$-theory, v. 1, Springer-Verlag, Berlin, 2005, 429–521
  11. Ю. И. Манин, “Соответствия, мотивы и моноидальные преобразования”, Матем. сб., 77(119):4 (1968), 475–507
  12. P. Samuel, “Relations d'equivalence en geometrie algebrique”, Proceedings of the international congress of mathematicians (Edinburgh, 1958), Cambridge Univ. Press, Cambridge, 1960, 470–487
  13. A. Suslin, V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94
  14. V. Voevodsky, “Homology of schemes”, Selecta Math. (N.S.), 2:1 (1996), 111–153
  15. V. Voevodsky, “Triangulated categories of motives over a field”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Rovinskii M.Z.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).