Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is known that the topological conjugacy class of a Morse-Smale flows with unique saddle is defined by the equivalence class of the Hopf knot in S2×S1">S2×S1 that is the projection of the one-dimensional saddle separatrix onto the basin of attraction of the nodal point, and the ambient manifold of a diffeomorphism in this class is the 3-sphere. In the present paper a similar result is obtained for gradient-like diffeomorphisms with exactly two saddle points and unique heteroclinic curve.

About the authors

Olga Vital'evna Pochinka

National Research University – Higher School of Economics in Nizhny Novgorod

Author for correspondence.
Email: olga-pochinka@yandex.ru
Doctor of physico-mathematical sciences, no status

Elena Anatol'evna Talanova

National Research University – Higher School of Economics in Nizhny Novgorod; National Research Lobachevsky State University of Nizhny Novgorod

Email: eltalanova72@gmail.com

Danila Denisovich Shubin

National Research University – Higher School of Economics in Nizhny Novgorod

Email: schub.danil@yandex.ru

References

  1. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
  2. P. Kirk, C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96
  3. P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp.
  4. B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228
  5. C. Bonatti, V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
  6. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
  7. В. З. Гринес, Е. В. Жужома, В. C. Медведев, “О диффеоморфизмах Морса–Смейла с четырьмя периодическими точками на замкнутых ориентируемых многообразиях”, Матем. заметки, 74:3 (2003), 369–386
  8. V. S. Afraimovich, M. I. Rabinovich, P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208
  9. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp.
  10. B. Шмуклер, O. Починка, “Бифуркации, меняющие тип гетероклинических кривых 3-диффеоморфизмов Морса–Смейла”, Таврический вестник информатики и математики, 50:1 (2021), 101–114
  11. T. V. Medvedev, O. V. Pochinka, “The wild Fox–Artin arc in invariant sets of dynamical systems”, Dyn. Syst., 33:4 (2018), 660-666

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Pochinka O.V., Talanova E.A., Shubin D.D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).