Comparison theorems for evolution inclusions with maximal monotone operators. $L^2$-theory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An evolution inclusion with time-dependent family of maximal monotone operators in considered in a separable Hilbert space. If the elements with minimum norm of the family of maximal monotone operators satisfy certain growth conditions, then the domains of definition of this family are closed convex sets. Hence the sweeping process is well defined, whose values are the normal cones of the domains of definition of maximal monotone operators. It is shown that if the sweeping process has a solution for each single-valued perturbation from the space of integrable functions, then the evolution inclusion with the maximal monotone operators and single-valued perturbations from the space of integrable functions is also solvable. Quite general conditions in terms of the properties of the family of maximal monotone operators that ensure the existence of solutions for the sweeping process are presented.
All results obtained and the approach presented are new. They are used to prove an existence theorem for evolution inclusions with multivalued perturbations, whose values are closed nonconvex sets.

About the authors

Alexander Alexandrovich Tolstonogov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: aatol@icc.ru
Doctor of physico-mathematical sciences, Professor

References

  1. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat., 50, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp.
  2. A. A. Tolstonogov, “BV continuous solutions of an evolution inclusion with maximal monotone operator and nonconvex-valued perturbation. Existence theorem”, Set-Valued Var. Anal., 29:1 (2021), 29–60
  3. J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
  4. A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., 17:6 (1991), 499–518
  5. D. Azzam-Laouir, W. Belhoula, C. Castaing, M. D. P. Monteiro Marques, “Perturbed evolution problems with absolutely continuous variation in time and applications”, J. Fixed Point Theory Appl., 21:2 (2019), 40, 32 pp.
  6. C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
  7. H. Attouch, “Familles d'operateurs maximaux monotones et measurabilite”, Ann. Mat. Pura Appl. (4), 120 (1979), 35–111
  8. В. И. Богачев, Основы теории меры, т. 2, 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2006, 679 с.
  9. H. Attouch, R. J.-B. Wets, “Quantitative stability of variational systems. I. The epigraphical distance”, Trans. Amer. Math. Soc., 328:2 (1991), 695–729
  10. M. G. Crandall, A. Pazy, “Semi-groups of nonlinear contractions and dissipative sets”, J. Funct. Anal., 3:3 (1969), 376–418
  11. A. A. Tolstonogov, “BV solutions of a convex sweeping process with local conditions in the sense of differential measures”, Appl. Math. Optim., 84, suppl. 1 (2021), S591–S629
  12. А. А. Толстоногов, “$L_p$-непрерывные селекторы неподвижных точек многозначных отображений с разложимыми значениями. I. Теоремы существования”, Сиб. матем. журн., 40:3 (1999), 695–709
  13. M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time-dependent domains”, Set-Valued Anal., 5:1 (1997), 57–72
  14. E. Vilches, Bao Tran Nguyen, “Evolution inclusions governed by time-dependent maximal monotone operators with a full domain”, Set-Valued Var. Anal., 28:3 (2020), 569–581
  15. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp.
  16. А. А. Толстоногов, “Максимальная монотонность оператора Немыцкого”, Функц. анализ и его прил., 55:3 (2021), 51–61
  17. A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301
  18. A. A. Tolstonogov, “Polyhedral sweeping processes with unbounded nonconvex-valued perturbation”, J. Differential Equations, 263:11 (2017), 7965–7983
  19. А. А. Толстоногов, “Полиэдральные многозначные отображения: свойства и приложения”, Сиб. матем. журн., 61:2 (2020), 428–452

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Tolstonogov A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).