Values of the $\mathfrak{sl}_2$ weight system on the chord diagrams whose intersection graphs are complete graphs.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A weight system is a function on the chord diagrams that satisfies Vassiliev's 4">4-term relation. Using the Lie algebra sl2">sl2 we can construct the simplest nontrivial weight system. The resulting sl2">sl2 weight system takes values in the space of polynomials of one variable and is completely determined by the Chmutov-Varchenko recurrence relations.
Although the definition of the sl2">sl2 weight system is rather simple, calculations of its values are laborious, and therefore concrete values are only known for a small number of chord diagrams. As concerns the explicit form of values at chord diagrams with complete intersection graphs, Lando stated a conjecture, which initially could only be proved for the coefficients at linear terms of the values of the weight system. We prove this conjecture in full using the Chmutov-Varchenko recurrence relations and the linear operators we introduce for adding a chord to a share, which is the subset of chords of the diagram with endpoints on two selected arcs. Also, relying on the generating function of the values of the sl2">sl2 weight system at chord diagrams with complete intersection graphs, we prove that the quotient space of shares modulo the recurrence relations is isomorphic to the space of polynomials in two variables.

About the authors

Polina Evgen'evna Zakorko

Department of Mathematics, National Research University "Higher School of Economics"

Author for correspondence.
Email: math-net2025_06@mi-ras.ru

without scientific degree, no status

References

  1. V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
  2. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
  3. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
  4. S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
  5. E. Krasilnikov, “An extension of the $mathfrak{sl}_2$ weight system to graphs with $nle 8$ vertices”, Arnold Math. J., 7:4 (2021), 609–618
  6. П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
  7. S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
  8. A. Bigeni, “A generalization of the Kreweras triangle through the universal $mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326
  9. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
  10. P. Flajolet, “Combinatorial aspects of continued fractions”, Discrete Math., 32:2 (1980), 125–161

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Zakorko P.E.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).