Algebra of shares, complete bipartite graphs, and $\mathfrak{sl}_2$ weight system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

 A function of chord diagrams is called a weight system if it satisfies the so-called four-term relations. Vassiliev's theory describes finite-order knot invariants in terms of weight systems. In particular, there is a weight system corresponding to the coloured Jones polynomial. This weight system is described in terms of the Lie algebra sl2">sl2. According to the Chmutov-Lando theorem, the value of this weight system depends only on the intersection graph of the chord diagram. Therefore, it is possible to discuss the values of this weight system at intersection graphs.
We obtain formulae for the generating functions of the values of the sl2">sl2 weight system at complete bipartite graphs. Using these formulae we prove that Lando's conjecture about the degree of the polynomial that is the value of this weight system at the projection of a graph onto the subspace of primitive elements in the Hopf algebra of graphs is true for complete bipartite graphs and for a certain wider class of graphs.
We introduce the algebra of shares and the sl2">sl2 weight system on shares. These are the main tools for our proof.

About the authors

Polina Aleksandrovna Zinova

HSE University

Author for correspondence.
Email: kazarian@mccme.ru

without scientific degree, no status

Maxim Eduardovich Kazarian

HSE University; Center for Advanced Studies, Skolkovo Institute of Science and Technology

Email: kazarian@mccme.ru
Doctor of physico-mathematical sciences, no status

References

  1. V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
  2. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
  3. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
  4. S. Chmutov, A. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
  5. S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
  6. П. Е. Закорко, “Значения $mathfrak{sl}_2$-весовой системы на хордовых диаграммах с полным графом пересечения”, Матем. сб., 214:7 (2023) (в печати)
  7. П. A. Филиппова, “Значения весовой системы, отвечающей алгебре Ли $mathfrak{sl}_2$, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93
  8. П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
  9. S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139
  10. S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
  11. J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
  12. W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330
  13. А. К. Звонкин, С. К. Ландо, Графы на поверхностях и их приложения, МЦНМО, М., 2010, 480 с.
  14. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Zinova P.A., Kazarian M.E.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).