How is a graph not like a manifold?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

 For an equivariantly formal action of a compact torus T">T on a smooth manifold X">X with isolated fixed points we investigate the global homological properties of the graded poset S(X)">S(X) of face submanifolds. We prove that the condition of the j">j-independency of tangent weights at each fixed point implies the (j+1)">(j+1)-acyclicity of the skeleta S(X)r">S(X)r for r>j+1">r>j+1. This result provides a necessary topological condition for a GKM graph to be a GKM graph of some GKM manifold. We use particular acyclicity arguments to describe the equivariant cohomology algebra of an equivariantly formal manifold of dimension 2n">2n with an (n1)">(n1)-independent action of the (n1)">(n1)-dimensional torus, under certain colourability assumptions on its GKM graph. This description relates the equivariant cohomology algebra to the face algebra of a simplicial poset. This observation underlines a certain similarity between actions of complexity 1">1 and torus manifolds.

About the authors

Anton Andreyevich Ayzenberg

Faculty of Computer Science, National Research University "Higher School of Economics"

Author for correspondence.
Email: ayzenberga@gmail.com
Candidate of physico-mathematical sciences, no status

Mikiya Masuda

Osaka City University; Faculty of Computer Science, National Research University "Higher School of Economics"

Email: masuda@sci.osaka-cu.ac.jp

Grigory Dmitrievich Solomadin

Faculty of Computer Science, National Research University "Higher School of Economics"

Email: grigory.solomadin@gmail.com
Candidate of physico-mathematical sciences, no status

References

  1. A. Adem, J. F. Davis, “Topics in transformation groups”, Handbook of geometric topology, North-Holland, Amsterdam, 2001, 1–54
  2. A. Ayzenberg, “Locally standard torus actions and $h'$-vectors of simplicial posets”, J. Math. Soc. Japan, 68:4 (2016), 1725–1745
  3. А. А. Айзенберг, “Торические действия сложности 1 и их локальные свойства”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК “Наука/Интерпериодика”, М., 2018, 23–40
  4. A. Ayzenberg, “Torus action on quaternionic projective plane and related spaces”, Arnold Math. J., 7:2 (2021), 243–266
  5. A. Ayzenberg, M. Masuda, Orbit spaces of equivariantly formal torus actions
  6. A. Ayzenberg, V. Cherepanov, “Torus actions of complexity one in non-general position”, Osaka J. Math., 58:4 (2021), 839–853
  7. A. Ayzenberg, V. Cherepanov, Matroids in toric topology
  8. A. Björner, “The homology and shellability of matroids and geometric lattices”, Matroid applications, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge, 1992, 226–283
  9. A. Björner, M. L. Wachs, V. Welker, “Poset fiber theorems”, Trans. Amer. Math. Soc., 357:5 (2005), 1877–1899
  10. E. D. Bolker, V. W. Guillemin, T. S. Holm, How is a graph like a manifold?
  11. G. E. Bredon, “The free part of a torus action and related numerical equalities”, Duke Math. J., 41:4 (1974), 843–854
  12. V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp.
  13. J. D. Carlson, E. A. Gamse, Y. Karshon, Realization of fixed-point data for GKM actions
  14. T. tom Dieck, Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter & Co., Berlin, 1987, x+312 pp.
  15. D. Dugger, A primer on homotopy colimits
  16. M. Franz, V. Puppe, “Freeness of equivariant cohomology and mutants of compactified representations”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 87–98
  17. M. Franz, V. Puppe, “Exact cohomology sequences with integral coefficients for torus actions”, Transform. Groups, 12:1 (2007), 65–76
  18. M. Goresky, R. Kottwitz, R. MacPherson, “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131:1 (1998), 25–83
  19. V. Guilleminn, C. Zara, “1-skeleta, Betti numbers, and equivariant cohomology”, Duke Math. J., 107:2 (2001), 283–349
  20. У. И. Сян, Когомологическая теория топологических групп преобразований, Мир, М., 1979, 243 с.
  21. S. Illman, “The equivariant triangulation theorem for actions of compact Lie groups”, Math. Ann., 262:4 (1983), 487–501
  22. М. Йосвиг, “Группа проективностей и раскраска фасет простого многогранника”, УМН, 56:3(339) (2001), 171–172
  23. S. Kuroki, “Introduction to GKM theory”, Trends in Math., 11:2 (2009), 113–129
  24. M. Masuda, T. Panov, “On the cohomology of torus manifolds”, Osaka J. Math., 43:3 (2006), 711–746
  25. D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147
  26. R. P. Stanley, “$f$-vectors and $h$-vectors of simplicial posets”, J. Pure Appl. Algebra, 71:2-3 (1991), 319–331
  27. V. Welker, G. M. Ziegler, R. T. Živaljevic, “Homotopy colimits – comparison lemmas for combinatorial applications”, J. Reine Angew. Math., 1999:509 (1999), 117–149

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Ayzenberg A.A., Masuda M., Solomadin G.D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).