Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let p1,p2,,p6">p1,p2,,p6 be prime numbers. First we show that, with at most O(N1/12+ε)">O(N1/12+ε) exceptions, all even positive integers not exceeding N">N can be represented in the form p12+p22+p33+p43+p53+p63">p12+p22+p33+p43+p53+p63, which improves the previous result O(N1/4+ε)">O(N1/4+ε) obtained by Y. H. Liu. Moreover, we also prove that, with at most O(N5/12+ε)">O(N5/12+ε) exceptions, all even positive integers not exceeding N">N can be represented in the form p12+p23+p33+p43+p53+p63">p12+p23+p33+p43+p53+p63.

About the authors

Xue Han

Shandong Normal University

Email: math-net2025_06@mi-ras.ru

Huafeng Liu

Shandong Normal University

Author for correspondence.
Email: math-net2025_06@mi-ras.ru

PhD, Associate professor

References

  1. J. Brüdern, “On Waring's problem for two cubes and two small cubes”, Acta Arith., 155:3 (2012), 271–285
  2. J. Brüdern, “On the asymptotic formula in Waring's problem: one square and three fifth powers”, Glasg. Math. J., 57:3 (2015), 681–692
  3. Р. Вон, Метод Харди–Литтлвуда, Мир, М., 1985, 184 с.
  4. T. D. Wooley, “On Waring's problem for intermediate powers”, Acta Arith., 176:3 (2016), 241–247
  5. R. C. Vaughan, On the representation of numbers as sums of squares, cubes and fourth powers and on the representation of numbers as sums of powers of primes, Ph.D. thesis, London Univ., London, 1969
  6. I. Vinogradow, “Some theorems concerning the theory of primes”, Матем. сб., 2(44):2 (1937), 179–195
  7. Loo-Keng Hua, “Some results in additive prime-number theory”, Quart. J. Math. Oxford Ser. (2), 9:1 (1938), 68–80
  8. J. Brüdern, Sieves, the circle method and Waring's problem for cubes, Mathematica Gottingenis, 51, Habilitationsschrift, Göttingen, 1991
  9. J. Brüdern, “A sieve approach to the Waring–Goldbach problem. I. Sums of four cubes”, Ann. Sci. Ecole Norm. Sup. (4), 28:4 (1995), 461–476
  10. Yingchun Cai, “Waring–Goldbach problem: two squares and higher powers”, J. Theor. Nombres Bordeaux, 28:3 (2016), 791–810
  11. Yuhui Liu, “On a Waring–Goldbach problem involving squares and cubes”, Math. Slovaca, 69:6 (2019), 1249–1262
  12. Yingchun Cai, “The Waring–Goldbach problem: one square and five cubes”, Ramanujan J., 34:1 (2014), 57–72
  13. Jinjiang Li, Min Zhang, “On the Waring–Goldbach problem for one square and five cubes”, Int. J. Number Theory, 14:9 (2018), 2425–2440
  14. K. Kawada, T. D. Wooley, “Relations between exceptional sets for additive problems”, J. Lond. Math. Soc. (2), 82:2 (2010), 437–458
  15. Lilu Zhao, “On the Waring–Goldbach problem for fourth and sixth powers”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1593–1622
  16. Jianya Liu, “Enlarged major arcs in additive problems. II”, Теория чисел, алгебра и анализ, Сборник статей. К 75-летию со дня рождения профессора Анатолия Алексеевича Карацубы, Труды МИАН, 276, МАИК “Наука/Интерпериодика”, М., 2012, 182–197
  17. Jianya Liu, Tao Zhan, “Sums of five almost equal prime squares. II”, Sci. China Ser. A, 41:7 (1998), 710–722
  18. Xiumin Ren, “On exponential sums over primes and application in Waring–Goldbach problem”, Sci. China Ser. A, 48:6 (2005), 785–797
  19. A. V. Kumchev, “On Weyl sums over primes and almost primes”, Michigan Math. J., 54:2 (2006), 243–268
  20. Lilu Zhao, “The additive problem with one cube and three cubes of primes”, Michigan Math. J., 63:4 (2014), 763–779
  21. Li Lu Zhao, “The exceptional set for sums of unlike powers of primes”, Acta Math. Sin. (Engl. Ser.), 30:11 (2014), 1897–1904

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Han X., Liu H.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).