About some classes of almost Hermitian structures, which realized on $S^6$

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Structures of cohomogeneity one on S6">S6 are under investigation. Examples of semi-Kähler and quasi-Kähler structures are constructed. Questions concerning the existence of almost Hermitian structures of cohomogeneity one on a round sphere are investigated.

About the authors

Nataliya Aleksandrovna Daurtseva

Novosibirsk State University

Author for correspondence.
Email: n.daurtseva@g.nsu.ru
Candidate of physico-mathematical sciences, Associate professor

References

  1. E. Calaby, H. Gluck, “What are the best almost-complex structures on the 6-sphere?”, Differential geometry: geometry in mathematical physics and related topics, Part 2 (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 2, Amer. Math. Soc., Providence, RI, 1993, 99–106
  2. T. Friedrich, “Nearly Kähler and nearly parallel $G_2$-structures on spheres”, Arch. Math. (Brno), 42:5 (2006), 241–243
  3. C. LeBrun, “Orthogonal complex structures on $S^6$”, Proc. Amer. Math. Soc., 101:1 (1987), 136–138
  4. G. Bor, L. Hernandez-Lamoneda, “The canonical bundle of a Hermitian manifold”, Bol. Soc. Mat. Mexicana (3), 5:1 (1999), 187–198
  5. L. Foscolo, M. Haskins, “New $G_2$-holonomy cones and exotic nearly Kähler structures on $S^6$ and $S^3times S^3$”, Ann. of Math. (2), 185:1 (2017), 59–130
  6. A. Gray, L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58
  7. P. S. Mostert, “On a compact Lie group acting on a manifold”, Ann. of Math. (2), 65:3 (1957), 447–455
  8. L. Berard-Bergery, “Sur de nouvelles varietes riemanniennes d'Einstein”, Inst. Elie Cartan, 6, Univ. Nancy, Nancy, 1982, 1–60
  9. Г. Бредон, Введение в теорию компактных групп преобразований, Наука, М., 1980, 440 с.
  10. F. Podestà, A. Spiro, “Six-dimensional nearly Kähler manifolds of cohomogeneity one”, J. Geom. Phys., 60:2 (2010), 156–164
  11. F. Podestà, A. Spiro, “Six-dimensional nearly Kähler manifolds of cohomogeneity one (II)”, Comm. Math. Phys., 312:2 (2012), 477–500
  12. P. Candelas, X. C. de la Ossa, “Comments on conifolds”, Nuclear Phys. B, 342:1 (1990), 246–268
  13. N. Hitchin, “Stable forms and special metrics”, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 70–89
  14. Н. А. Даурцева, “Квази-кэлеровы структуры кооднородности $1$ на $S^2times S^4$”, Сиб. матем. журн., 61:4 (2020), 765–776

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Daurtseva N.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).