Bernstein–Szegö inequality for Riesz derivative of trigonometric polynomials in the spaces $L_p$, $0\le p\le\infty$, with the classical value of the best constant

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Bernstein-Szegő inequality for the Weyl derivative of real order α0">α0 of trigonometric polynomials of degree n">n is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to nα">nα (the classical value) in all Lp">Lp-spaces, 0p">0p. The set of all such α">α is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all nN">nN.

About the authors

Anastasiya Olegovna Leont'eva

Ural Federal University named after the First President of Russia B. N. Yeltsin

Author for correspondence.
Email: lao-imm@yandex.ru
Candidate of physico-mathematical sciences, Researcher

References

  1. H. Weyl, “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljschr. Naturforsch. Ges. Zürich, 62 (1917), 296–302
  2. В. В. Арестов, “Неравенство Сеге для производных сопряженного тригонометрического полинома в $L_0$”, Матем. заметки, 56:6 (1994), 10–26
  3. А. Зигмунд, Тригонометрические ряды, т. I, II, Мир, М., 1965, 615 с., 537 с.
  4. С. Г. Самко, А. А. Килбас, О. И. Маричев, Интегралы и производные дробного порядка и некоторые их приложения, Наука и техника, Минск, 1987, 688 с.
  5. В. В. Арестов, “Интегральные неравенства для алгебраических многочленов на единичной окружности”, Матем. заметки, 48:4 (1990), 7–18
  6. В. В. Арестов, “Об интегральных неравенствах для тригонометрических полиномов и их производных”, Изв. АН СССР. Сер. матем., 45:1 (1981), 3–22
  7. В. В. Арестов, “Точные неравенства для тригонометрических полиномов относительно интегральных функционалов”, Тр. ИММ УрО РАН, 16:4 (2010), 38–53
  8. В. В. Арестов, П. Ю. Глазырина, “Интегральные неравенства для алгебраических и тригонометрических полиномов”, Докл. РАН, 442:6 (2012), 727–731
  9. V. V. Arestov, P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512
  10. В. В. Арестов, П. Ю. Глазырина, “Неравенство Бернштейна–Сеге для дробных производных тригонометрических полиномов”, Тр. ИММ УрО РАН, 20:1 (2014), 17–31
  11. T. Erdèlyi, “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323, 9 pp.
  12. A. O. Leont'eva, “Bernstein–Szegő inequality for trigonometric polynomials in $L_p$, $0le p leinfty$, with the classical value of the best constant”, J. Approx. Theory, 276 (2022), 105713, 11 pp.
  13. Н. П. Корнейчук, В. Ф. Бабенко, А. А. Лигун, Экстремальные свойства полиномов и сплайнов, Наукова думка, Киев, 1992, 304 с.
  14. В. Ф. Бабенко, Н. П. Корнейчук, В. А. Кофанов, С. А. Пичугов, Неравенства для производных и их приложения, Наукова думка, Киев, 2003, 590 с.
  15. G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., River Edge, NJ, 1994, xiv+821 pp.
  16. A. I. Kozko, “The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416
  17. В. В. Арестов, “О неравенствах С. Н. Бернштейна для алгебраических и тригонометрических полиномов”, Докл. АН СССР, 246:6 (1979), 1289–1292
  18. Н. В. Попов, “Об одном интегральном неравенстве для тригонометрических полиномов”, Современные методы теории функций и смежные проблемы, Материалы Международной конференции “Воронежская зимняя математическая школа” / Воронеж. гос. ун-т; Моск. гос. ун-т им. М. В. Ломоносова; Матем. ин-т им. В. А. Стеклова РАН (28 января – 2 февраля 2021 г.), Издательский дом ВГУ, Воронеж, 2021, 243–245
  19. Г. Полиа, Г. Сегe, Задачи и теоремы из анализа, в 2 т., Наука, М., 1978, 391 с., 431 с.
  20. M. Marden, The geometry of the zeros of a polynomial in a complex variable, Math. Surveys, 3, Amer. Math. Soc., New York, 1949, ix+183 pp.
  21. Н. И. Ахиезер, Классическая проблема моментов и некоторые вопросы анализа, связанные с нею, Физматгиз, М., 1961, 310 с.
  22. P. L. Butzer, S. Jansche, “A direct approach to the Mellin transform”, J. Fourier Anal. Appl., 3:4 (1997), 325–376

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Leont'eva A.O.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).