On a class of interpolation inequalities on the 2D sphere
- Authors: Zelik S.V.1,2, Ilyin A.A.3
-
Affiliations:
- University of Surrey
- Lanzhou University
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- Issue: Vol 214, No 3 (2023)
- Pages: 120-134
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133521
- DOI: https://doi.org/10.4213/sm9786
- ID: 133521
Cite item
Abstract
We prove estimates for the
About the authors
Sergey Vital'evich Zelik
University of Surrey; Lanzhou University
Author for correspondence.
Email: s.zelik@surrey.ac.uk
Doctor of physico-mathematical sciences, Senior Researcher
Aleksei Andreevich Ilyin
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Email: ailyin58@gmail.com
Doctor of physico-mathematical sciences, Senior Researcher
References
- W. Beckner, “Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality”, Ann. of Math. (2), 138:1 (1993), 213–242
- M. F. Bidaut-Veron, L. Veron, “Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations”, Invent. Math., 106:3 (1991), 489–539
- J. Dolbeault, M. J. Esteban, M. Kowalczyk, M. Loss, “Sharp interpolation inequalities on the sphere: new methods and consequences”, Chinese Ann. Math. Ser. B, 34:1 (2013), 99–112
- E. H. Lieb, “An $L^p$ bound for the Riesz and Bessel potentials of orthonormal functions”, J. Funct. Anal., 51:2 (1983), 159–165
- A. A. Ilyin, S. Zelik, “Sharp dimension estimates of the attractor of the damped 2D Euler–Bardina equations”, Partial differential equations, spectral theory, and mathematical physics, EMS Ser. Congr. Rep., EMS Press, Berlin, 2021, 209–229
- A. Ilyin, A. Kostianko, S. Zelik, “Sharp upper and lower bounds of the attractor dimension for 3D damped Euler–Bardina equations”, Phys. D, 432 (2022), 133156, 13 pp.
- С. В. Зелик, А. А. Ильин, А. Г. Костянко, “Оценки размерности аттракторов регуляризированной системы Эйлера с диссипацией на сфере”, Матем. заметки, 111:1 (2022), 54–66
- A. Ilyin, A. Kostianko, S. Zelik, “Applications of the Lieb–Thirring and other bounds for orthonormal systems in mathematical hydrodynamics”, The physics and mathematics of Elliott Lieb. The 90th anniversary, v. I, EMS Press, Berlin, 2022, 583–608
- К. И. Бабенко, “Об одном неравенстве в теории интегралов Фурье”, Изв. АН СССР. Сер. матем., 25:4 (1961), 531–542
- W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102 (1975), 159–182
- Ш. М. Насибов, “Об оптимальных константах в некоторых неравенствах Соболева и их приложении к нелинейному уравнению Шрeдингера”, Докл. АН СССР, 307:3 (1989), 538–542
- Э. Либ, М. Лосс, Анализ, Науч. кн., Новосибирск, 1998, 276 с.
- M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys., 87:4 (1983), 567–576
- G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl. (4), 110 (1976), 353–372
- E. H. Lieb, “Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities”, Ann. of Math. (2), 118:2 (1983), 349–374
- И. Стейн, Г. Вейс, Введение в гармонический анализ на евклидовых пространствах, Мир, М., 1974, 336 с.
- H. Araki, “On an inequality of Lieb and Thirring”, Lett. Math. Phys., 19:2 (1990), 167–170
- E. Lieb, W. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics. Essays in honor of Valentine Bargmann, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ, 1976, 269–303
- B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp.
- A. Ilyin, A. Laptev, S. Zelik, “Lieb–Thirring constant on the sphere and on the torus”, J. Funct. Anal., 279:12 (2020), 108784, 18 pp.
- J. A. Hempel, G. R. Morris, N. S. Trudinger, “On the sharpness of a limiting case of the Sobolev imbedding theorem”, Bull. Austral. Math. Soc., 3:3 (1970), 369–373
- A. A. Ilyin, “Lieb–Thirring inequalities on the $N$-sphere and in the plane, and some applications”, Proc. London Math. Soc. (3), 67:1 (1993), 159–182
- А. А. Ильин, “Частично диссипативные полугруппы, порожденные системой Навье–Стокса на двумерных многообразиях, и их аттракторы”, Матем. сб., 184:1 (1993), 55–88
- В. И. Крылов, Приближенное вычисление интегралов, Физматгиз, М., 1959, 327 с.
- С. В. Зелик, А. А. Ильин, “Асимптотика функций Грина и точные интерполяционные неравенства”, УМН, 69:2(416) (2014), 23–76
Supplementary files
